Анализ рядов распределения - Курсовая работа

бесплатно 0
4.5 50
Использование статистических характеристик для анализа ряда распределения. Частотные характеристики ряда распределения. Показатели дифференциации, абсолютные характеристики вариации. Расчет дисперсии способом моментов. Теоретические кривые распределения.

Скачать работу Скачать уникальную работу

Чтобы скачать работу, Вы должны пройти проверку:


Аннотация к работе
Ряд распределения (т.е. упорядоченное распределение единиц изучаемой совокупности на группы по определенному варьирующему признаку) характеризует состав, структуру совокупности по определенному признаку. Его строят для того, чтобы выявить характер распределения единиц совокупности по варьирующему признаку, определить закономерности в этом распределении. Для анализа ряда распределения используют ряд статистических характеристик: частотные характеристики; Частотные характеристики ряда распределения, а именно, частоты и частости (или другое название - доля ), накопленные (или кумулятивные) частоты и частости , абсолютная и относительная плотность распределения, были рассмотрены в теме "Сводка и группировка статистических данных". К характеристикам центра распределения относят среднюю, моду и медиану.Мода (Мо) - это варианта, которая чаще всего встречается в изучаемой совокупности. Мода не зависит от крайних значений вариант и может применяется для характеристики центра в рядах распределения с неопределенными границами. В дискретном вариационном ряду мода определяется визуально и равна варианте с наибольшей частотой или частостью. Данные распределения рабочих по стажу работы (см. лекцию "Сводка и группировка статистических данных") показывают, что наибольшее рабочих имеют стаж работы 4 года, т.е. варианта, равная 4, является модой признака. В интервальных рядах распределения для нахождения моды сначала по наибольшей частоте определяют модальный интервал, т.е. интервал, содержащий моду, а затем приблизительно рассчитывают ее по формуле: , где - нижняя граница модального интервала;Таким образом, в ранжированном ряду распределения одна половина ряда имеет значения признака, превышающие медиану, другая - меньше медианы. Медиану используют вместо средней арифметической, когда крайние варианты ранжированного ряда (наименьшая и наибольшая) по сравнению с остальными оказываются чрезмерно большими или чрезмерно малыми. В дискретном вариационном ряду, содержащем нечетное число единиц, медиана равна варианте признака, имеющей номер В дискретном ряду, состоящем из четного числа единиц совокупности, медиана определяется как средняя из вариант, имеющих номера и : . При вычислении медианы в интервальном ряду сначала находят медианный интервал, (т.е. содержащий медиану), для чего используют накопленные частоты или частости.Если возникает необходимость изучить структуру вариационного ряда более подробно, вычисляют значения признака, аналогичные медиане. Такие значения признака, которые делят все единицы распределения на равные численности, называют квантилями, или градиентами. Квартилями (Q) называют значения признака, которые делят совокупность на четыре равные по числу единиц части.Следовательно, чем больше варианты отдельных единиц совокупности различаются между собой, тем больше они отличаются от своей средней, и наоборот - варианты, мало отличающиеся друг от друга, более близки по значению к средней, которая в таком случае будет более реально представлять всю совокупность. Поэтому для характеристики и измерения вариации признака в совокупности кроме средней используют следующие показатели: абсолютные - вариационный размах, среднее линейное и среднее квадратическое отклонение, дисперсию; Однако, вследствие суммирования квадратов отклонений дисперсия дает искаженное представление об отклонениях, поэтому ее на основе рассчитывают среднее квадратическое отклонение, которое показывает, на сколько в среднем отклоняются конкретные варианты признака от их среднего значения. Дисперсия обладает следующими свойствами: если все значения признака уменьшить или увеличить на одну и ту же величину А, то дисперсия от этого не уменьшится: , если все значения признака уменьшить или увеличить в одно и то же число раз (h раз), то дисперсия соответственно уменьшится или увеличится в раз.

План
Содержание

Введение

1. Характеристики центра распределения

1.1 Мода

1.2 Медиана

1.3 Показатели дифференциации

Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность
своей работы


Новые загруженные работы

Дисциплины научных работ





Хотите, перезвоним вам?