Анализ линейной активной цепи - Курсовая работа

бесплатно 0
4.5 55
Определение передаточной функции цепи. Анализ частотных, временных, спектральных характеристик радиотехнических цепей. Исследование влияния параметров цепи на характеристики выходного сигнала. Нахождение выходного сигнала методом интеграла наложения.

Скачать работу Скачать уникальную работу

Чтобы скачать работу, Вы должны пройти проверку:


Аннотация к работе
Особое внимание уделяется сущности процессов в цепи и фундаментальным понятиям, важным для изучения линейных систем. Курсовая работа по теории линейных цепей способствует систематизации и закреплению знаний студента в области теоретической радиотехники, прививает практические навыки расчета и анализа характеристик радиотехнических сигналов и цепей, способствует освоению современных математических пакетов. Рассмотрим цепь с параметрами, заданными в индивидуальном варианте (Рис 1). Построим операторную схему замещения цепи при нулевых начальных условиях. Выразим из уравнений (1.1) и (1.2) U30 и приравняем: Учтем, что В результате получаем равенство: Отсюда операторный коэффициент передачи цепи по напряжению: Подставим в эту формулу выражения для Yij и запишем выражение для операторного коэффициента передачи по напряжению: гдеИз формул (1.7) и (1.11) получим выражение для определения переходной характеристики: Воспользуемся формулой (1.12) и данными таблицы1.1 и построим графики переходной характеристики для двух значений коэффициентов усиления операционного усилителя (Рисунок 1.4) Приведем таблицу значений функций в точках t=?*b/5, b=0..10 радиотехнический цепь интеграл сигнал Из формул (1.7) и (1.13) получим выражение для определения переходной характеристики: Воспользуемся формулой (1.14) и данными таблицы1.1 и построим графики переходной характеристики для двух значений коэффициентов усиления операционного усилителя (Рисунок 1.5) Найдем реакцию цепи на импульс, изображенный на рисунке: Рисунок 2.1 Входной импульсный сигнал При заданной форме входного сигнала на выходе имеем следующее: В соответствии с формулой (2.4) и рисунком 2, построим импульс на выходе цепи для двух значений коэффициента усиления операционного усилителя (Рисунок 2.2).На построенных графиках входного и выходного сигналов (Рис 2.2, Рис 2.4), входному импульсу высокого уровня соответствует участок графика, спадающего по экспоненциальному закону, низкого уровня - возрастающий участок графика, что близко к идеальной интегрирующей цепи. 2 К идеальному интегрированию наиболее близка операция, выполняемая цепью при меньшей длительности сигнала и большем коэффициенте усиления операционного усилителя ((Рис 2.2), U22(t)). 5 График амплитудно-частотной характеристики (Рис 1.2) цепи принимает большее значение в нуле, спадает более круто и далее практически совпадает при частотах порядка 107 Гц с графиками меньшего значения коэффициента усиления, плавно спадая. 6 График фазочастотной характеристики цепи (Рис 1.3) идет немного круче, сохраняя значение при нулевой частоте, равное 900.

Вывод
1 На основе проделанного анализа данной активной цепи можно сказать, что анализируемая цепь - пропорционально-интегрирующая. На построенных графиках входного и выходного сигналов (Рис 2.2, Рис 2.4), входному импульсу высокого уровня соответствует участок графика, спадающего по экспоненциальному закону, низкого уровня - возрастающий участок графика, что близко к идеальной интегрирующей цепи.

2 К идеальному интегрированию наиболее близка операция, выполняемая цепью при меньшей длительности сигнала и большем коэффициенте усиления операционного усилителя ((Рис 2.2), U22(t)). Чем больше коэффициент усиления и чем меньше длительность импульса, тем более близок участок графика на протяжении импульса к линейной зависимости.

При увеличении коэффициента усиления: 3 Увеличивается постоянная времени цепи (таблица 1), при ?1=10 равная 25,64 мк с, при ?1=2=100 равная 38,64 мк с, при ?1=10000 равная 40,64 мк с.

4 Полоса пропускания уменьшается, т.к. является величиной, обратной постоянной времени (таблица 1).

5 График амплитудно-частотной характеристики (Рис 1.2) цепи принимает большее значение в нуле, спадает более круто и далее практически совпадает при частотах порядка 107 Гц с графиками меньшего значения коэффициента усиления, плавно спадая.

6 График фазочастотной характеристики цепи (Рис 1.3) идет немного круче, сохраняя значение при нулевой частоте, равное 900.

7 Переходная характеристика принимает по модулю большие значения при тех же промежутках времени, т.к. увеличивается постоянная времени цепи, влияющая на операторный коэффициент К(р).

8 Импульсная характеристика цепи (Рис 1.4, Рис 1.5) сильно меняется, идет круче, различаясь примерно на 0.5*106 при изменении времени на 2 микросекунды, что так же обосновывается зависимостью от постоянной времени цепи.

9 График выходного сигнала (Рис 2.2) меняется быстрее, имея большие максимальные амплитудные значения.

10 При увеличении длительности входного сигнала (Рис 2.1, Рис 2.3) выходной сигнал (Рис 2.4) приближается по форме графика к идеальному;

Список литературы
1. Гоноровский И.С. Радиотехнические цепи и сигналы/ И.С. Гоноровский.

М.: Радио и связь, 1986

2. Попов В.П. Основы теории цепей/ В.П. Попов. М.: Высшая школа, 1985;

3. Баскаков С.И. Радиотехнические цепи и сигналы: руководство к решению задач: сборник задач/ С.И. Баскаков. М.: Высшая школа, 2002.

Размещено на .ru

Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность
своей работы


Новые загруженные работы

Дисциплины научных работ





Хотите, перезвоним вам?