Разработка метода определения содержания компонентов в составе наноструктурированных композиционных материалов для авиакосмической промышленности на примере разработки референтной методики для образца меди (метод атомно–абсорбционной спектрометрии).
При низкой оригинальности работы "Анализ химического состава наноструктурированных композиционных материалов", Вы можете повысить уникальность этой работы до 80-100%
Материалами, требующими особой точности состава при контроле производства являются сплавы и композиты. Данные материалы используются как в обшивке, так и в двигателях летательных аппаратов. В связи с этим возникает потребность в высокоточных, достоверных результатах измерений содержания компонентов в твердых веществах и материалах. Изменение состава сплава хотя бы на один процент в процессе производства может привести к недопустимому изменению свойств материала, что ведет за собой непригодность к применению данного сплава.В основу разрабатываемого во ФГУП «ВНИИОФИ» Государственного первичного эталона единиц массовой (молярной) доли и массовой (молярной) концентрации компонентов в жидких и твердых веществах и материалах на основе спектральных методов (далее по тексту ГЭТ 196-2015) положены следующие методы измерения: - атомно-абсорбционная спектрометрия; В настоящее время, подавляющее большинство исследований и измерений, в области количественного анализа веществ и материалов, сопровождаются определением оптико-физических характеристик веществ и процессов. Сложность решения проблем метрологического обеспечения спектральных измерений сегодня обусловлена тем, что необходимо проведение одновременно работ по нескольким направлениям: с одной стороны - это идентификация и установление химического состава, свойств и структуры атомно-молекулярного строения веществ и материалов, а с другой - это обеспечение единства и качества измерений, достижение предельной чувствительности и точности (правильности и прецизионности) методов количественного химического анализа и аналитического контроля характеристик и параметров веществ и материалов на всех этапах жизненного цикла продукции. Арсенал современных методов и средств спектральных измерений, необходимых для широкого применения в сфере измерений, испытаний, контроля, диагностики для оценки и подтверждения соответствия продукции, настолько обширен, а применение их настолько разнообразно, что требуется разработка методологических основ и системное освоение теоретических принципов, технического воплощения, а главное возможностей их практического использования, в том числе на основе законодательства Российской Федерации, аттестованных методик выполнения измерений, испытаний и контроля для оценки и подтверждения соответствия показателей безопасности и качества продукции, процессов производства, эксплуатации, хранения, перевозки и утилизации с учетом требований Федеральных Законов Российской Федерации, технических регламентов и международных требований ВТО и Директив «нового» и «глобального» подхода. Особенность спектральных измерений, как вида измерений в области оптико-физических измерений, состоит в том, что спектральные измерения сформировались в результате многолетних научных исследований на основе тенденций развития инструментальных методов в аналитической химии для количественного химического анализа в соответствии с принципами: «от периферии к центру атома», «атомы в молекулах».В этих условиях для повышения качества измерений состава веществ и материалов необходимо было создать метрологически обоснованную систему воспроизведения, хранения и передачи размера единицы величины, характеризующей содержание компонентов в веществах и материалах, средствам измерений и реактивам, применяемым в количественном химическом анализе. Метрологическое обеспечение измерений содержания компонентов в жидких и твердых веществах и материалах является сложной задачей ввиду многообразия объектов анализа, включающих в себя жидкости и твердые вещества органической и неорганической природы, их водные и неводные растворы, а также материалы на их основе. Создание государственного первичного эталона (ГПЭ) единиц массовой (молярной) доли и массовой (молярной) концентрации компонента в жидких и твердых веществах и материалах на основе спектральных методов и метода хромато-масс-спектрометрии с изотопным разбавлением ГЭТ 196-2001, позволило решить вопросы поверки и калибровки средств измерений содержания компонентов в жидких и твердых веществах и материалах различных предприятий промышленности, контроля метрологических характеристик при проведении их испытаний; метрологической аттестации методик измерений (МИ) и контроля их характеристик погрешности в процессе применения МИ. Государственный первичный эталон единиц массовой (молярной) доли и массовой (молярной) концентрации компонента в жидких и твердых веществах и материалах на основе спектральных методов [3] состоит из измерительных комплексов, комплекса стандартных образцов, средств измерений, референтных методик измерений и оборудования: - спектральный комплекс (Атомно-абсорбционная спектрометрия, Атомно-эмиссионная спектрометрия, эталонная интерферометрическая установка, эталонная спектрорадиометрическая установка, государственные стандартные образцы, референтные методики измерений, меры) Внешний вид государственного первичного эталона массовой (молярной) доли и массовой (молярной) концентрации компонента в жидких и твердых веществах и материалах на
План
Содержание композиционный медь абсорбционный спектрометрия
Введение
1. Аналитический обзор методов и средств измерений единицы массовой (молярной) доли и массовой (молярной) концентрации компонентов в твердых веществах и материалах на основе спектральных методов
1.1 Обзор методов
1.2 Преимущества и недостатки атомно-абсорбционного метода
2. Исследование Государственного первичного эталона единиц массовой (молярной) доли и массовой (молярной) концентрации компонентов в жидких и твердых веществах и материалах на основе спектральных методов ГЭТ 196-2015
2.1 Структурная схема и конструктивные особенности основных составных частей ГЭТ 196-2015
2.2 Измерение массовых концентраций компонентов сплавов на примере спектрометра атомно-абсорбционного Квант-Z. ЭТА-Т, входящего в состав ГЭТ 196-2015
2.3 Определение длины волны возбуждающего излучения с помощью интерферометрического комплекса, входящего в состав ГЭТ 196-2015
3. Повышение точности измерения и расширения диапазона измерения массовой (молярной) доли и массовой (молярной) концентрации компонента посредством совершенствования метода определения состава наноструктурированных сплавов
3.1 Расширение диапазона измерений массовой (молярной) доли и массовой (молярной) концентрации на примере исследования образца Cd
3.2 Анализ методов повышения точности измерения массовой (молярной) доли и массовой (молярной) концентрации компонентов в жидких и твердых веществах и материалах
3.3 Повышение точности измерения массовой (молярной) доли и массовой (молярной) концентрации на примере исследования массовой доли элементов в чистых веществах применительно к образцу Fe для передачи единицы величины от ГЭТ 196-2015
3.4 Экспериментальная обработка результатов исследования в целях повышения точности измерения массовой (молярной) доли и массовой (молярной) концентрации применительно к анализу образца Fe на содержание микропримесей
4. Разработка и внедрение повышения точности метода определения содержания компонентов в составе наноструктурированных композиционных материалов для авиакосмической промышленности
4.1 Исследование современной базы референтных методик измерения массовой доли элементов в чистых веществах (кобальте и железе) для передачи единицы величины от ГЭТ 196-2015
4.2 Исследование образца Cu, на содержание микропримесей, с помощью атомно-абсорбционного спектрометра Квант - Z.ЭТА, входящего в состав ГЭТ 196-2015
4.3 Результаты пилотных сличений в области измерения массовой доли меди и примесей в бескислородной медной катанке марки КМБ М001б (тема КООМЕТ № 645/RU/14) для определения чистоты меди
4.4 Референтная методика как результат проведенных работ по повышению точности измерения и расширения диапазона измерения массовой (молярной) доли и массовой (молярной) концентрации компонента посредством совершенствования метода определения состава наноструктурированных сплавов
Заключение
Список использованных источников
Введение
Развитие современных технологий в авиационной и космической отрасли требует легкости и прочности применяемых материалов. Материалами, требующими особой точности состава при контроле производства являются сплавы и композиты. Данные материалы используются как в обшивке, так и в двигателях летательных аппаратов.
В связи с этим возникает потребность в высокоточных, достоверных результатах измерений содержания компонентов в твердых веществах и материалах.
Высокая точность определения химического состава необходима для получения строго заданных характеристик сплавов металлов и композитных материалов. Последние представляют собой искусственные неоднородные материалы, образованные путем соединения нескольких компонентов при условии их совместной работы для получения общих свойств.
Введение даже незначительного количества наноразмерных частиц в различные сплавы приводит к проявлению особенностей электрохимических, магнитных и других свойств данных наноструктурированных материалов. Поэтому определение содержания компонентов в составе наноструктурированных композиционных материалов является важной задачей. Изменение состава сплава хотя бы на один процент в процессе производства может привести к недопустимому изменению свойств материала, что ведет за собой непригодность к применению данного сплава. Например, недопустимо изменение теплоемкости материала, так как при критических нагрузках может привести к повреждению деталей летательных аппаратов в результате перегрева.
Поскольку вышеперечисленные области применения материалов напрямую относятся к жизни и здоровью людей, то данные материалы подвергаются тщательному контролю и анализу, как при разработке, так и в процессе производства. Актуальной проблемой в процессе разработки композитных материалов является определение примесей в чистых веществах, лежащих в основе некоторых композитных материалов, поскольку примеси могут оказывать негативное влияние на конечные свойства материала, такие как удельная теплоемкость, стойкость к коррозии, упругость, окисление, удельное электрическое сопротивление.
Целью данной выпускной квалификационной работы является повышение точности анализа химического состава наноструктурированных композиционных материалов. Основной задачей данной выпускной квалификационной работы является разработка и внедрение метода определения содержания компонентов в составе наноструктурированных композиционных материалов для авиакосмической промышленности на примере разработки референтной методики для образца меди.
Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность своей работы