Законы физической и коллоидной химии - Методичка

бесплатно 0
4.5 68
Понятие, классификация и характеристика газов, предназначение электрохимии. Основы химической термодинамики и термохимии. Особенности химического равновесия, специфика фазового равновесия. Свойства разбавленных растворов, химическая кинетика и катализ.


Аннотация к работе
Физическая химия является основой для дальнейшего изучения специальных дисциплин, поскольку предусматривает изучение связи между физическими процессами и химическими превращениями, протекающими при производстве, транспортировке, хранении, а также и в реализации полиграфической продукции. Взаимодействия между частицами у вещества в газообразном состоянии очень слабые, они усиливаются, когда вещество переходит в жидкое или твердое состояние. Если силы взаимодействий между частицами уже не способны преодолевать тепловые колебания, существующие связи между частицами рвутся и образуются новые, частицы смещаются относительно друг друга, и хотя контакт между ними сохраняется, нарушается геометрически правильная структура - это жидкое состояние. Частицы свободны и перемещаются беспрепятственно (неупорядоченное состояние), причем собственный объем молекул газа настолько мал по сравнению с объемом, в котором эти молекулы располагаются, что его можно не учитывать. В твердом состоянии вещество с трудом изменяет объем и форму (слабо сжимается и ничтожно мало деформируется), в жидком - с трудом изменяет объем, но легко может менять форму (чрезвычайно слабо сжимается, но свободно деформируется), а в газообразном - легко изменяет как объем, так и форму.Количественный обмен энергией между системой и окружающей средой рассматривается с помощью понятий теплота и работа. Теплота и работа являются возможными формами передачи энергии от одной системы к другой, т.е. имеющими место лишь при взаимодействии системы с внешней средой или с другой системой. В соответствии с первым законом термодинамики (по-другому - законом сохранения энергии), энергия не возникает из ничего и не исчезает бесследно, но энергия одного вида может переходить в энергию другого вида. Энергия, полученная системой в форме теплоты, может превращаться в работу, и наоборот, энергия, полученная в форме работы - в теплоту. Теплота и работа (имеется в виду любой вид работ: расширение газа, поднятие груза, перенос заряда, изменение поверхностного натяжения и др.), представляющие собой формы передачи энергии, не являются функциями состояния системы, а зависят от пути проведения процесса.Постоянная величина Кс, равная отношению констант скоростей прямой и обратной реакций, количественно описывает состояние равновесия через равновесные концентрации исходных веществ и продуктов их взаимодействия (в степени их стехиометрических коэффициентов) и называется константой равновесия. Если реакция (3.1) протекает самопроизвольно при постоянных Р и Т или V и Т, то значения DG и DF этой реакции можно получить из уравнений: , (3.8) где С А, С В, С С, С D - неравновесные концентрации исходных веществ и продуктов реакции. Качественно направление этого изменения определяется принципом (правилом) Ле-Шателье: при повышении температуры равновесное состояние сдвигается в сторону эндотермического процесса (происходит поглощение энергии); при понижении температуры происходит сдвиг равновесия в обратную сторону - реакция пойдет справа налево (по отношению к установившемуся соотношению исходного и конечного количества реагентов в равновесной системе), т.е. в сторону экзотермического процесса (идет выделение энергии за счет обратной реакции). Влияние других факторов на химическое равновесие, кроме температуры, также обусловлено правилом Ле-Шателье: если на систему, находящуюся в термодинамическом равновесии, воздействовать путем изменения каких-либо условий, при которых это равновесие существует, то в системе возникнет реакция, ослабляющая эффект произведенного воздействия. При понижении давления эта реакция пойдет в сторону увеличения числа моль, и система в итоге придет к новому состоянию равновесия (численное значение константы равновесия в новом равновесном состоянии системы будет тем же самым).Здесь рассматриваются только растворы, в которых растворителем является жидкость (чаще всего вода), а растворенными веществами - газы, жидкости или твердые вещества. Состав раствора характеризуется количеством растворенного вещества (веществ) в единице количества раствора или растворителя. Осмос - самопроизвольное движение молекул растворителя через полупроницаемую мембрану, разделяющую растворы разной концентрации, из раствора меньшей концентрации в раствор с более высокой концентрацией, что приводит к разбавлению последнего. Процесс переноса растворителя (осмос) можно предотвратить, если на раствор с большей концентрацией оказать внешнее гидростатическое давление (в условиях равновесия это будет так называемое осмотическое давление, обозначаемое буквой p). Согласно закону Рауля относительное понижение давления пара растворителя (А) над раствором ?зависит только от мольной доли растворенного в жидкости вещества (В), то есть определяется числом частиц вещества В в единице объема, но не зависит от свойств растворенного вещества: , (4.4) где N В - мольная доля вещества В в растворе, определяемая по формулеТак, для произвольной реакции а A b B = c C d D уравнением для расчета скорости прямой реакц

План
СОДЕРЖАНИЕ

ВВЕДЕНИЕ

ПРОГРАММА КУРСА «ФИЗИЧЕСКАЯ ХИМИЯ»

1. КРАТКАЯ ХАРАКТЕРИСТИКА ГАЗОВ

2. ОСНОВЫ ХИМИЧЕСКОЙ ТЕРМОДИНАМИКИ И ТЕРМОХИМИИ

3. ХИМИЧЕСКОЕ РАВНОВЕСИЕ. ФАЗОВОЕ РАВНОВЕСИЕ

4. СВОЙСТВА РАЗБАВЛЕННЫХ РАСТВОРОВ

5. ХИМИЧЕСКАЯ КИНЕТИКА И КАТАЛИЗ

6. ЭЛЕКТРОХИМИЯ

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

Введение
«Физическая и коллоидная химия» - дисциплины, изучением которых завершается химическая подготовка специалистов биологов и биохимиков. Физическая химия является основой для дальнейшего изучения специальных дисциплин, поскольку предусматривает изучение связи между физическими процессами и химическими превращениями, протекающими при производстве, транспортировке, хранении, а также и в реализации полиграфической продукции.

Физическая химия - наука, которая, основываясь на законах физики, изучает химические превращения, происходящие в сложных физико-химических системах. Наиболее полезно изучение таких разделов физической химии, как термодинамика, фазовые равновесия, кинетика, свойства растворов электролитов и неэлектролитов, электрохимия.

Физическая химия обеспечивает преемственность и связь с неорганической, органической, аналитической химией, а также некоторыми разделами физики, т. е. обеспечивает целостную систему физико-химической подготовки специалиста.

Цель дисциплины - дать будущим специалистам знания, необходимые для профессионального решения вопросов производства, транспортировки, хранения и реализации полиграфической продукции.

В результате изучения дисциплины студент должен: · знать основные законы физической и коллоидной химии, методику расчета термодинамических и кинетических величин для определения направленности и условий протекания химических процессов, методы экспериментального определения основных физических и химических параметров процесса;

· уметь применять полученные знания в профессиональной деятельности.

1.

Энергетическое взаимодействие между частицами вещества (атомами, молекулами, ионами) определяет существование его в твердом, жидком или газообразном состояниях (агрегатное состояние вещества). Взаимодействия между частицами у вещества в газообразном состоянии очень слабые, они усиливаются, когда вещество переходит в жидкое или твердое состояние. Если силы межчастичного притяжения больше энергии тепловых колебаний - вещества находятся в твердом состоянии. Твердое кристаллическое состояние характеризуется упорядоченной структурой (геометрически правильное расположение частиц в пространстве).

Если силы взаимодействий между частицами уже не способны преодолевать тепловые колебания, существующие связи между частицами рвутся и образуются новые, частицы смещаются относительно друг друга, и хотя контакт между ними сохраняется, нарушается геометрически правильная структура - это жидкое состояние. Таким образом, частицы в жидкости взаимосвязаны, но структура ее не определена, хотя на близком расстоянии от определенной частицы расположение других частиц может быть упорядоченным. Твердое и жидкое состояния называют конденсированным состоянием.

Если же частицы вещества не связаны друг с другом - это газообразное состояние.

Идеальный газ - это идеализированное состояние реальных газов при бесконечно малом давлении (концентрации). Принимается, что между частицами идеального газа нет никаких взаимодействий - ни притяжения, ни отталкивания. Частицы свободны и перемещаются беспрепятственно (неупорядоченное состояние), причем собственный объем молекул газа настолько мал по сравнению с объемом, в котором эти молекулы располагаются, что его можно не учитывать. Понятие идеальное состояние принято для упрощения первичного математического описания систем, а переход к реальному состоянию осуществляется путем введения в уравнения для идеального газа необходимых поправок (учитывая межчастичные взаимодействия и объем частиц).

В твердом состоянии вещество с трудом изменяет объем и форму (слабо сжимается и ничтожно мало деформируется), в жидком - с трудом изменяет объем, но легко может менять форму (чрезвычайно слабо сжимается, но свободно деформируется), а в газообразном - легко изменяет как объем, так и форму.

При очень высокой температуре (сотни тысяч градусов) энергия столкновений между частицами газа настолько велика, что молекулы разрушаются, а атомы теряют электроны, в результате чего образуется плазма, состоящая из ядер и электронов. Плазма рассматривается как четвертое - плазменное состояние материи (например, вещества внутри Солнца).

Газовые системы являются наиболее наглядными моделями при изучении законов термодинамики и кинетики. От свойств идеальных газов легко перейти к свойствам идеальных жидких растворов, а затем и к свойствам реальных растворов.

Уравнение состояния идеального газа определяет соотношение между давлением, температурой и объемом газа. Так, для случая переменных параметров состояния P, V и T они связаны между собой следующим образом:

(1.1) где n - число моль идеального газа в объеме V, т.е. , здесь m - масса газа, г;

M - молярная масса газа, г/моль;

R - универсальная газовая постоянная (коэффициент пропорциональности), которую для 1 моль идеального газа (из уравнения 1.1) можно выразить: . (1.2)

В численном выражении (в системе СИ) универсальная газовая постоянная равна 8,31 Дж/моль.К, а учитывая, что 1 кал = 4,18 Дж, R = 1,987 кал/моль·К. Во внесистемных единицах R = 0,082 л·атм/моль·К.

Если в объеме V смешано несколько идеальных газов, то каждый из них будет оказывать на стенки сосуда свое собственное (парциальное) давление - такое, как если бы только один газ занимал весь объем. Тогда наблюдаемое полное давление будет равно сумме парциальных давлений каждого газа (закон Дальтона), и уравнение состояния для смеси газов А, В и С в объеме V при температуре Т примет вид: PV = (PA РВ РС)V = (NA NB NC)RT, (1.3) где РА, РВ и РС - парциальное давление индивидуальных газов А, В и С, Па;

NA, NB и NC - количество моль отдельных газов А, В и С.

Отметим, что для реальных газов (с более высокими, т.е. реальными, концентрациями молекул) должны учитываться взаимные притяжения газовых молекул и их собственный объем, который будет занимать уже заметную долю от всего объема. Тогда объем, в котором движутся молекулы реального газа, будет не V, а V - b, где константа b - учет суммарного собственного объема молекул и их взаимного отталкивания (на малых расстояниях). Кроме того, вследствие наличия в реальном газе сил межмолекулярного притяжения, давление реального газа должно быть ниже давления идеального газа, что также необходимо учитывать, т.е. вводить еще один дополнительный коэффициент а, относящийся к свойству молекул конкретного реального газа. Тогда уравнение состояния (1.4) для реального газа принимает вид (Ван-дер-Ваальс): , (1.4) где a и b - константы, характеризующие свойства молекул данного реального газа; находятся экспериментальным путем.
Заказать написание новой работы



Дисциплины научных работ



Хотите, перезвоним вам?