Сокращение сырьевой базы молибденовой промышленности. Создание рациональных технологий переработки труднообогатимых молибденовых руд. Производство молибдена из сульфидных, сульфидных медных руд, молибденового лома, колошниковой пыли плавильных печей.
Аннотация к работе
Однако, вполне реально, что предприятия, эксплуатирующие Жирекенское, Сорское и Тырныаузское месторождения и производящие 98% молибдена в концентрате, исчерпают запасы руды соответственно к 2015, 2020 и 2025 годам. Молибден (Мо) - широко распространенный элемент земной коры, однако добывают его далеко не во всех странах мира, по причине редкой встречаемости пород с содержанием высококачественной молибденовой руды (молибденита, ). В некотором количестве молибден получают в качестве побочного продукта при обработке медных руд. Молибден (в различных степенях окисления - 0, 2, 3, 4, 5 и 6) входит в состав широкого спектра применяемых в промышленности соединений. Контакт с такими веществами, как смазочный аэрозоль бисульфида молибдена, гексакарбонила молибдена и продуктов его распада, пыли гидроксида молибдена при гальваностегии, а также испарений триоксида молибдена, образующихся при температуре выше , может представлять опасность для здоровья человека.Концентрат подвергают окислительному обжигу при 570-600 °С в многоподовых печах или печах кипящего слоя. Основным методом обогащения молибденитовых руд является флотация - способ разделения мелких частиц различных веществ, основанный на различной их смачиваемости и накоплении на поверхности раздела фаз. С помощью этого процесса удается получить концентрат, содержащий до 10% молибдена. Повторяя этот процесс 5-6 раз (с промежуточным измельчением), получают, в зависимости от технологии и первоначального минералогического состава, качественный молибденовый концентрат с содержанием Mo 48-58,6%, Cu 0,01-2,2%. Если в концентрате содержится рений, при обжиге образуется летучий оксид Re2O7, к-рый удаляют вместе с печными газами.Молибден отделяется в виде побочного продукта на стадии флотации при измельчении сульфидных медных руд. Подсистема выделения молибдена как побочного продукта: 1 - серная кислота и ферроцианид натрия; 2 - концентратор; 3 - кондиционер; 4 - всплыв; 5 - стадии очистки; 6 - остаток; 7 - пенообразователь, ферроцианид натрия, нефть; 8 - фильтрация, сушка, упаковка; 9 - 5,8 т концентрата MOS2 (90-96% MOSJ, <0,5% Си); 10 - фильтр; // - подготовленная руда (60 ООО т/День, 0,02% молибденита, 0,7% CUS); 12 - хвосты; 13 - первичная флотация; 14 - 90% CUS восстанавливается и 80% молибденита; 15 - 430 т в день концентрата, содержащего 9,6 т молибденита; 16 - мельница; 17 - серная кислота, пероксид водорода, депрессоры (ферроцианид калия, цианид и ферроцианид натрия), нефть (коллектор молибденита), пенообразователь, 18а, б - первый н второй аппараты для флотации молибденита; 19 - 420 т в день медного концентрата, направляемого на фильтрование и плавку; 20 - остаток (сульфида меди). Совместное отделение сульфидов молибдена и меди путем флотации не представляет какой-либо проблемы. Производят приготовление раствора для выщелачивания путем растворения в воде гипохлорита натрия (nacio), при этом содержание последнего в растворе устанавливают в соответствии с отношением гипохлорита натрия к содержанию молибдена в сырье (3-13): 1. В соответствии со значением остаточного содержания молибдена корректируют содержание гипохлорита натрия, поддерживая его соотношение с остаточным содержанием молибдена (3-13): Таким образом, концентрацию выщелачивающего раствора уменьшают по мере выщелачивания.
Введение
Необходимость создания рациональных технологий переработки труднообогатимых молибденовых руд связана, прежде всего, с сокращением сырьевой базы молибденовой промышленности нашей страны. И хотя в России разведано более десяти месторождений с промышленными запасами молибдена и семь из них представлены к промышленному освоению, однако в настоящее время только три месторождения разрабатываются. По некоторым оценкам разведанные запасы могут обеспечить производство молибдена (по современному уровню его потребления) на 50-60 лет. Однако, вполне реально, что предприятия, эксплуатирующие Жирекенское, Сорское и Тырныаузское месторождения и производящие 98% молибдена в концентрате, исчерпают запасы руды соответственно к 2015, 2020 и 2025 годам.
Глава 1. Молибден
1.1 Месторождения и использование
Молибден (Мо) - широко распространенный элемент земной коры, однако добывают его далеко не во всех странах мира, по причине редкой встречаемости пород с содержанием высококачественной молибденовой руды (молибденита, ). В некотором количестве молибден получают в качестве побочного продукта при обработке медных руд. В значительной мере в качестве источника молибдена могут служить угольные электростанции. Молибден - важный микроэлемент.
Молибден (в различных степенях окисления - 0, 2, 3, 4, 5 и 6) входит в состав широкого спектра применяемых в промышленности соединений. Он легко переходит из одной степени окисления в другую при малейших изменениях условий внешней среды. Для этого элемента характерна тенденция к образованию комплексов - за исключением сульфидов и галогенидов, большая часть его соединений представляют собой комплексы. Шестивалентный молибден образует изо - и гетерополярные кислоты.
Более 90% производимого в мире молибдена используется в качестве добавки к сплавам цветных металлов и железа, в том числе - сталям; остальные 10% применяются в производстве химических реактивов и смазочных материалов. В качестве составного элемента сталей молибден находит применение в электрике и электронике, военной и автомобильной промышленности, а также в самолетостроении. Еще одна область применения молибдена - производство неорганических молибденсодержащих красителей, морилок и лаков. В следовых количествах молибден все чаще используется в удобрениях.
Самое важное из используемых в промышленности соединений этого элемента - триоксид молибдена , получаемый путем термической обработки сульфидных руд. Чистый триоксид молибдена применяется в производстве химреактивов и катализаторов, технически чистый - в качестве катализатора в нефтехимии, а также как составная часть керамических глин, эмалей и красителей. Бисульфид молибдена применяется в качестве термостойкой смазки или добавки к смазкам. Гексакарбонил молибдена - исходное вещество для синтеза органических молибденсодержащих дубильных веществ. Он все шире используется для покрытия поверхностей путем термического разложения.
Соединения молибдена широко используются как катализаторы или активаторы (промоторы) катализа, в особенности в нефтехимической промышленности - при крекинге и реформинге нефтепродуктов и алкилировании. Применяются они также в качестве лабораторных химреактивов (фосфомолибдаты). Кроме того, молибденсодержащие вещества используются в гальваностегии и при протравливании (дублении).
При выработке и промышленном применении молибдена и его соединений возможен контакт с пылью и аэрозолями, содержащими как сам молибден, так и его оксиды и сульфиды. Особенно велика вероятность этого контакта в ходе высокотемпературных технологических процессов, например, при использовании электропечей. Контакт с такими веществами, как смазочный аэрозоль бисульфида молибдена, гексакарбонила молибдена и продуктов его распада, пыли гидроксида молибдена при гальваностегии, а также испарений триоксида молибдена, образующихся при температуре выше , может представлять опасность для здоровья человека.
Эксперименты на животных показали высокую токсичность соединений молибдена. Острые отравления могут послужить причиной сильного раздражения желудочно-кишечного тракта, поноса, комы и даже летального исхода от разрыва сердца. Данные исследований на животных подтверждают и способность молибдена вызывать дисфункции легких, по симптоматике сходные с пневмокониозом. У рабочих, контактировавших с чистым молибденом или оксидом молибдена (при концентрациях от 1 до 19 мг ) в течение 3-7 лет, также обнаруживался пневмокониоз. Вдыхание молибденовой пыли при работе со сплавами или карбидами этого металла может вызвать специфическую “легочную болезнь тяжелых металлов”.
Степень токсичности различных молибденсодержащих веществ неодинакова. Так, нерастворимые соединения этого элемента (например, бисульфид и многие оксиды и галогениды) характеризуются низкой токсичностью, а растворимые - в которых молибден присутствует в составе аниона (например, молибденат натрия - ) - намного более токсичны. С этими веществами необходимо обращаться с повышенной осторожностью. Меры предосторожности необходимо принимать и в случае риска чрезмерного контакта со свежими испарениями молибдена при разложении гексакарбонила этого металла.
Контакт с триоксидом молибдена вызывает раздражение глаз и слизистых оболочек носа и горла. Характерное проявление молибденовой интоксикации - анемия, пониженная концентрация гемоглобина и сокращение числа эритроцитов.
При повышенном уровне содержания молибдена в корме для скота у животных наблюдалась деформация суставов конечностей. У химиков, имевших дело с растворами соединений молибдена и вольфрама, нередко отмечалась подагра; была доказана также корреляция между содержанием молибдена в пище и заболеваемостью подагрой, уремией и ксантиноксидазной активностью.
Рекомендации по безопасности и охране здоровья На промышленных предприятиях, использующих молибден, должна быть установлена вытяжная вентиляция непосредственно у источника испарений. При инженерных и аварийных работах, связанных с устранением погрешностей систем контроля или установке таковых, нужно использовать респираторы, если эти работы сопряжены с необходимостью входа в цистерны или иные закрытые резервуары. В красильной промышленности, в типографиях и в гальванических цехах должны наличествовать местная и общая система вытяжной вентиляции, а также защитные стекла (очки), спецодежда и достаточно надежные респираторы, позволяющие снизить уровень контакта с сухими молибденсодержащими ингредиентами неорганических и органических красителей.
Список литературы
1. Ахметов Н.С. "Общая и неорганическая химия" М.: Высшая школа, 2001.
2. Берт Р.О. "Технология гравитационного обогащения" М.: Недра, 1990.
3. Бусев А.И. Аналитическая химия молибдена. М.: Издательство АН СССР, 1962, - 300с.
4. Васильев В.П. Аналитическая химия. В 2 кн. Кн.2. Физико-химические методы анализа: Учеб. для студ. вузов, обучающихся по химико-технологическим специальностям - 2-е изд., перераб. и доп. - М.: Дрофа, 2002. - 384 с.
5. Глинка Н.Л. Общая химия. - Л.: Химия, 1988. - 702 с.
6. Гороновский И.Т., Назаренко Ю.П., Некряч Е.Ф. Краткий справочник по химии К.: Издательство АН СССР, 1962, 658 с.
7. Жарский И.М., Новиков И.Г. Физические методы исследования в неорганической химии. М.: Высшая школа, 1988, 271 с.
8. Зеликман А.Н., Коршунов Б.Г. Металлургия редких металлов М.: Металлургия, 1991.
9. Карякин Ю.В., Ангелов И.И. "Чистые химические вещества" М. 1974.
10. Крешков А.П., Ярославцев А.А. Курс аналитической химии. - М.: Химия, 1964. - 430 с.
11. Меркин Э.Н. "Экстракция металлов некоторыми органическими катионообменными реагентами" М., 1968.
12. Некрасов Б.В. "Основы общей химии" т.1 М.: Химия 1973.
13. Ритчи Г.М., Эшбрук А.В. Экстракция: принципы и применение в металлургии. Пер. с англ. М.: Металлургия, 1983.
14. Рысс М.А. "Производство ферросплавов" М.: Металлургия, 1985.
15. Скуг Д., Уэст Д. Основы аналитической химии. В 2 т. Пер с англ. М.: Мир, 1979, - 438 с.
16. Справочник химика. В 3-х т. М.: Химия, 1966, 1070 с.
17. Степин Б.Д., Горштейн И.Г., Блюм Г.З., Курдюмов Г.М., Оглоблина И.П. "Методы получения особо чистых неорганических веществ" Л.: Химия, 1969.
18. Фигуровский Н.А. "История химии" М.: Просвещение 1979.
19. Физическая химия. Практическое и теоретическое руководство. Под ред. Б.П. Никольского, Л.: Химия, 1987. - 875 с.
20. Химия и технология редких и рассеянных элементов. Под ред. Большакова К.А.Ч. ІІІ. М.: Высшая школа, 1976, 320 с.
21. Химия: Справочное издание/ под ред.В. Шретер, К. - Х, Лаутеншлегер, Х. Бибрак и др.: Пер. с нем. - М.: Химия, 1989. - 648 с.
22. Химическая энциклопедия в 5 т. / под ред. И.Л. Кнунянца. - М.: Советская энциклопедия, 1990.
23. Ягодин Г.А., Синегрибова О.А., Чекмарев А.М. "Технология редких металлов в атомной технике" М.: Атомиздат, 197