Общее представление о теории вероятностей. Элементы теории вероятностей и статистики на уроках математики в начальной школе (методика работы). Анализ эксперимента. Констатирующий, методический, контрольный эксперимент.
Аннотация к работе
Гюйгенс, в ответах которых на запросы азартных игроков и переписке между собой были введены основные понятия этой теории - вероятность события и математическое ожидание. Важнейший этап теории вероятностей связан с именем швейцарского математика Я. Бернулли. В течение последних десятилетий элементы теории вероятностей и комбинаторики то вводились разделом в курс математики общеобразовательной школы, то исключались вообще. Почему же реально преподавать в начальной школе элементы теории вероятностей? Но даже если учитель программу не игнорирует, то он до конца не понимает как преподавать элементы раздела математики, который называется математическая логика, как включать в систему обучения элементы теории вероятностей и статистики.Классическая теория вероятностей рассматривает вероятность как отношение числа благоприятствующих случаев ко всем возможным. В классической теории вероятностей мы имеем дело со случаями, когда вычисленная чисто теоретически вероятность того или иного события подтверждается в процессе опытной проверки. Это отношение числа появлений изучаемого события в серии испытаний в данных условиях к числу всех испытаний, в которых это событие могло бы появиться при тех же условиях. Применение математики к изучению событий такого характера опирается на то, что во многих случаях при многократном повторении испытаний в примерно равных условиях частота появления результата остается примерно одинаковой. Результат же представляет собой отношение числа опытов, в которых он имел место, к общему числу производимых опытов.Например, если в ящике находятся только красные шары, то событие из ящика извлечен красный шар является достоверным (в ящике нет шаров другого цвета). В нашем примере таковым является событие из ящика извлечен синий шар (таких шаров просто нет). Если бы в урне находились красные и синие шары, то событие из ящика извлечен красный шар - случайное (ведь мы можем и не извлечь красный шар в данном испытании). Два события называются совместными в данном опыте, если появление одного из них не исключает появления другого в этом же опыте. Элементарные исходы, при которых данное событие наступает, называются благоприятствующими этому событию, или благоприятными шансами.Вероятностью события называется отношение числа элементарных исходов, благоприятствующих данному событию, к числу всех равновозможных исходов опыта, в котором может появиться это событие. A обозначают через P(A) (здесь P - первая буква французского слова probabilite - вероятность): , aaa m - число элементарных исходов, благоприятствующих событию Событие “извлеченный шар оказался голубым” обозначим буквой Данное испытание имеет 10 равновозможных элементарных исходов, из которых 6 благоприятствуют событию Какова вероятность того, что число на взятой карточке окажется делящимся на 5?Если для каждого игрока равновозможно показать 1, 2 или 3 пальца, то чему равна вероятность того, что общее число показанных пальцев четно? Составим таблицу, в которой номер строки - число пальцев, показанных первым игроком, номер столбца - число пальцев, показанных вторым игроком, а на пересечении строки и столбца стоит общее число показанных пальцев, т. е. сумма номеров строки и столбца. Поскольку результат первой партии не влияет на результат второй, то примерно в половине тех матчей, где первый игрок победил в первой партии, он проиграет во второй, всего примерно в n/2?1/2 = n/4 матчах. Аналогично события “победил в обоих партиях первый игрок”, “победил в первой партии второй игрок, а во второй - первый”, “в обоих партиях победил второй игрок” будут иметь место примерно в n/4 матчах, т. е. вероятности всех этих событий равны 1/4. Значит вероятность выиграть 5 партий из 8 у равносильного противника равна 56/256 = 7/32, что меньше 1/4 = 8/32 - вероятности выиграть три партии из четырех.Эксперимент, помогающий подвести младших школьников к понятиям: невозможное событие, достоверное событие, а в отношении случайных событий - установить градации: более вероятное событие, менее вероятное событие. Сколько шаров нужно вынуть из мешка, чтобы наверняка иметь шары трех цветов?” Помогите Буратино дать правильный ответ. Целесообразно исследовать, в каком из случаев имеется наибольшая возможность получить шары трех цветов - если вытащить 3, или 4, или 5, или 6 шаров. № пяти монет 20 40 60 80 100 исх выпало: Сколько раз данный исход цифрой гербом предпол реализ предпол реализ предпол реализ предпол реализ предпол реализ Можно сказать, что каждый из данных случаев называют событием, и выяснить, какое событие более возможно, менее возможно, есть ли среди данных событий равновозможные.Как воспринимают школьники самые простые (или более сложные) задачи, направленные на активизацию различных мыслительных операций? Возможно ли научить учащихся начальных классов решать задачи и проводить эксперименты по теории вероятностей? В эксперименте принимали участие ученики третьих классов. Предлагалась система задач с использованием элементов теории вероятностей и статистики, которые о
План
Содержание
ВВЕДЕНИЕ
ГЛАВА I. ОБЩЕЕ ПРЕДСТАВЛЕНИЕ О ТЕОРИИ ВЕРОЯТНОСТЕЙ
I. 1. КАК ПОЙМАТЬ СЛУЧАЙ?
I. 2. КЛАССИФИКАЦИЯ СОБЫТИЙ
I. 3. КЛАССИЧЕСКОЕ ОПРЕДЕЛЕНИЕ ВЕРОЯТНОСТИ
I. 4. О СМЫСЛЕ ФОРМУЛЫ ВЕРОЯТНОСТИ СОБЫТИЯ
ГЛАВА II. ЭЛЕМЕНТЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ И СТАТИСТИКИ НА УРОКАХ МАТЕМАТИКИ В НАЧАЛЬНОЙ ШКОЛЕ (МЕТОДИКА РАБОТЫ)
ГЛАВА III. АНАЛИЗ ЭКСПЕРИМЕНТА
III.1. КОНСТАТИРУЮЩИЙ ЭКСПЕРИМЕНТ
III.2. МЕТОДИЧЕСКИЙ (ОБУЧАЮЩИЙ) ЭКСПЕРИМЕНТ
III.3. КОНТРОЛЬНЫЙ ЭКСПЕРИМЕНТ
ЗАКЛЮЧЕНИЕ
ЛИТЕРАТУРА
Введение
Развитие теории вероятностей с момента зарождения этой науки и до настоящего времени было несколько своеобразным. На первом этапе истории этой науки она рассматривалась как занимательный “пустячок”, как собрание курьезных задач, связанных в первую очередь с азартными играми в кости и карты. Основателями теории вероятностей были французские математики Б. Паскаль и П. Ферма, и голландский ученый Х. Гюйгенс, в ответах которых на запросы азартных игроков и переписке между собой были введены основные понятия этой теории - вероятность события и математическое ожидание.
Важнейший этап теории вероятностей связан с именем швейцарского математика Я. Бернулли. Им было дано доказательство частного случая закона больших чисел, так называемой теоремы Бернулли. С того времени теория вероятностей оформляется как математическая наука.
Строгое логическое обоснование теории вероятностей произошло в XX в. и связано с именами советских математиков С. Н. Бернштейна и А. Н. Колмогорова.
В течение последних десятилетий элементы теории вероятностей и комбинаторики то вводились разделом в курс математики общеобразовательной школы, то исключались вообще. Внимание, которое уделяется этому учебному предмету во всем мире, позволяет предположить, что концепция его введения является актуальной.
На наш взгляд, заслуживает внимания методика обучения учащихся теории вероятностей, которая основывается на понятии логико-методической модели “эксперимент”.
Эксперимент - это модель опыта с конечным множеством исходов. Как и в любой модели выделено главное: множество исходов и возможность наступления каждого из них. Некоторые эксперименты доступны детям младшего школьного возраста.
Почему же реально преподавать в начальной школе элементы теории вероятностей?
Она требует весьма немногого от технически формализованной математики: если овладеть действиями с дробями, можно уже весьма далеко продвинуться. Зачатки алгебры позволяют сформулировать теоретико-вероятностные принципы в общем виде. Теорию вероятностей можно применять также непосредственно как и элементарную арифметику, т. е. с помощью моделей, которые каждый может понять сразу.
Правильное понимание теории вероятностей является прекрасной возможностью показать школьникам процесс математизации - и это практически единственная возможность после элементарной арифметики, вслед за которой плохо усвоенная дедуктивность делает непонятными другие ветви математики.
Известны многие прекрасные опыты введения теории вероятностей уже на ранних стадиях обучения. Мы поддерживаем идею А. Энгеля пронизывать элементами теории вероятностей изучение дробей в младших классах, считая такое приближение к реальной действительности полезным. В подходе А. Энгеля удается добиться непрерывности изучения теории вероятностей. Мы полагаем, что школьник, занимавшийся ею в достаточно раннем возрасте, легче перенесет абстрактную, далекую от реальной действительности “математизацию” в старших классах. Точно также ему пойдет на пользу изучение теории вероятностей в старших классах, если уже в младших были введены некоторые элементы предмета на описательном уровне.
Учитывая требования к современному обучению и возможности 6-10 летних детей, школьная программа предусматривает сформировать у учащихся элементы математических понятий и логической структуры мышления. Это требуется от учителя, но, к сожалению, многие из них игнорируют программу. Но даже если учитель программу не игнорирует, то он до конца не понимает как преподавать элементы раздела математики, который называется математическая логика, как включать в систему обучения элементы теории вероятностей и статистики. К сожалению, мало методических пособий для учителей начальной школы, которые помогли бы справиться с такими заданиями, сделали бы обучающий процесс интересным и доступным.
Объект исследования - процесс подготовки учителя начальных классов к обучению младших школьников элементам теории вероятностей и статистики.
Предметом исследования является влияние системы задач на формирование вероятностных и статистических понятий у учеников начальной школы.
Гипотеза исследования. Мыслительные способности, как и всякие другие, можно и надо развивать. Достижению этой цели во многом может способствовать изучение элементов теории вероятностей и статистики через систему специальных задач и экспериментов.
В связи с выдвинутой гипотезой определены цель и задачи исследования.
Цель: показать методику работы использования элементов теории вероятностей и статистики на уроках математики в начальной школе; создать систему задач и упражнений, направленных на знакомство и усвоение новых знаний.
Задачи: u показать доступность изучения элементов теории вероятностей и статистики в начальной школе;
u показать роль задач и экспериментов в усвоении элементарных знаний о теории вероятностей и статистики;
Методологической и теоретической основой являются работы отечественных и зарубежных философов, педагогов, психологов, математиков.
Базой исследования явилась гимназия № 1 г. Слонима.
Во время исследования использованы методы: - изучение и анализ литературы по психологии, педагогике, логике, математике, учебников по математике для начальной школы под ред. А. А. Столяра;
- анализ действующей программы обучения математике в начальных классах;
- беседа;
- рассказ;
- педагогическое наблюдение за деятельностью учащихся;
- анализ письменных ответов учеников.
Замечание.
1) В первой главе мы предлагаем минимальный теоретический материал, которым должен владеть учитель начальных классов. Здесь мало методических указаний. Но даже из приводимых определений, примеров видно, что материал доступен учащимся III-IV классов, а некоторые из заданий - и более младшим школьникам.
2) Методика работы с элементами теории вероятностей рассматривается во второй главе; там же мы вернемся к ряду положений из главы I.