Волоконно-оптические линии связи - Реферат

бесплатно 0
4.5 61
Анализ свойств обычных источников света. Его основные параметры: цвет, длина волны и частота. Лазер как источник оптического излучения. Световод - посредник между передатчиком и приемником. Шум как главный враг техники связи. Понятие импульсного режима.


Аннотация к работе
У человека имеется пять органов чувств, но один из них особенно важен - это зрение. Глазами человек воспринимает большую часть информации об окружающем его мире в 100 раз больше, чем посредством слуха, не говоря уже об осязании, обонянии и вкусе. Далее человек заметил ”посторонний источник света” - солнце. Он фактически построил то, что сегодня мы называем оптической линией связи или оптической системой связи, включающей передатчик (источник), модулятор, оптическую кабельную линию и приемник (глаз). Определив в качестве модуляции преобразование механического сигнала в оптический, например открытие и закрытие источника света, мы можем наблюдать в приемнике обратный процесс - демодуляцию: преобразование оптического сигнала в сигнал другого рода для дальнейшей обработки в приемнике.Сегодня знание природы света углубилось незначительно. Физики сошлись лишь во мнении о том, что свет объединяет в себе оба свойства: корпускулярную природу и типичные свойства волнового процесса, которые представляют внешние признаки одной и той же физической реальности.Чтобы понять различия источников света, которые применяются в качестве передатчиков в устройствах оптической техники связи, остановимся прежде всего на свойствах обычных источников света. В обычной лампе накаливания не одна, а огромное количество различных длин волн, причем можно указать приближенно лишь крайние значения области длин волн.Когда накладываются два волновых фронта с одинаковой фазой, это означает, что максимумы колебаний обоих процессов точно совпадают и оба процесса складываются и усиливаются. Однако если между обоими процессами имеется разность фаз или различие по расстоянию точно на половину длинны волны, т. е. совпадает максимум одного колебания с минимумом другого и оба имеют одинаковую мощность, то процессы гасят друг друга. Свойство естественных источников света, которые никогда между собой не интерферируют, так как их фазовые состояния постоянно претерпевают случайные и быстрые колебания, называется некогерентностью. Хотя световые лучи, как и радиоволны радиопередатчика, являются электромагнитными колебаниями, только с гораздо меньшей длиной волны и соответственно более высокой частотой, они отличаются от радиоволн именно свойством некогерентности. Одиночные атомы излучают световые импульсы спонтанно и несинхронно, т. е. независимо друг от друга и поэтому в целом некогерентно.Переход с уровня на основной , строго говоря, запрещен, т. е. электрон на уровне мог бы быть устойчивым. Атом за счет этой внешней энергии теперь возбужден “накачан”), более того, совокупность атомов достигла так называемой инверсии населенностей (электронами) энергетических зон. С этого состояния начинается цепная реакция, подобная процессу в генераторе с обратной связью, вызываемая случайным процессом излучения энергии хотя бы одним из возбужденных атомов. Такой атом случайно переходит из состояния в состояние и при этом отдает энергию излучения - сравнительно короткую последовательность колебаний, но все же достаточную, чтобы встретить на своем пути через стержневидный кристалл второй возбужденный атом. В качестве источников света применялись лампы-вспышки, которые периодически возбуждали кристалл сверхмощными некогерентными световыми импульсами и вызывали излучение коротких когерентных световых импульсов.Кроме названных существенными недостатками газового лазера являются его размеры, механическая непрочность, высокие, требуемые для газового разряда рабочие напряжения и, наконец, ограниченный срок службы, обусловленный недолговечностью газоразрядной трубки. Относительно большие электронные лампы, которые еще господствовали в технике приборостроения 60-х годов, сегодня за редким исключением исчезли и представляют только исторический интерес. Полупроводниковый прибор господствует в широкой области электроники, требует невысоких рабочих напряжений и меньших (на несколько порядков) мощностей. Полупроводниковый лазер отличается от газового и твердотельного лазеров способом возбуждения. Оно вызывает ток и путем нарушения равновесия носителей зарядов (электронов и дырок) - желаемую инверсию населенностей энергетических зон в области р-n перехода.Когда к началу 60-х годов появились первые пригодные к эксплуатаций лазеры, стало очевидным, что свет предстал в новом качестве - когерентное электромагнитное колебание на несколько порядков раздвинуло границы применяемого в технике связи диапазона частот. Оптимистические расчеты едва или можно было опровергнуть: длины волн около 1 мкм соответствуют частоте Гц.Так же как и человеческий глаз, он не реагирует на плоскость поляризации света и регистрирует только мощность света (в модели - степень отклонения струны); он не различает горизонтальную и вертикальную поляризацию света. Будучи поставлены в определенном положении относительно направления распространения луча, они становятся светопроницаемыми для определенного вида поляризации, для света же с направлением поляризации, повернутым на , они, напротив, почти полностью непроницаемы. Это

План
СОДЕРЖАНИЕ

ГЛАВА 1. СВЕТ ПЕРЕНОСИТ ИНФОРМАЦИЮ

ГЛАВА 2. ОТ СПЕКТРА К КОГЕРЕНТНОСТИ

2.1 ЧТО ТАКОЕ СВЕТ?

2.2 ЦВЕТ, ДЛИННА ВОЛНЫ, ЧАСТОТА - ТРИ ХАРАКТЕРНЫХ ПАРАМЕТРА СВЕТА

2.3 СПЕКТРЫ ИСТОЧНИКОВ СВЕТА

2.4 ЕСТЕСТВЕННЫЙ СВЕТ В ОПЫТАХ ПО ИНТЕРФЕРЕНЦИИ

ГЛАВА 3. ТЕХНИКА ОПЕРЕЖАЕТ ПРИРОДУ

3.1 КАК ОБРАЗУЕТСЯ НЕКОГЕРЕНТНЫЙ СВЕТ

3.2 ЛАЗЕР КАК ИСТОЧНИК СВЕТОВОГО ИЗЛУЧЕНИЯ

3.3 ВЫСОКАЯ СТЕПЕНЬ КОГЕРЕНТНОСТИ ТРЕБУЕТ ЗАТРАТ

3.4 ПОЛУПРОВОДНИКОВЫЙ ЛАЗЕР, ПРЕДНАЗНАЧЕННЫЙ ДЛЯ МИКРОЭЛЕКТРОНИКИ

ГЛАВА 4. УТОПИЯ И РЕАЛЬНОСТЬ

4.1 ФАНТАСТИЧЕСКИЕ ВОЗМОЖНОСТИ

4.2 МОДУЛЯЦИЯ ИНТЕНСИВНОСТИ ИЗЛУЧЕНИЯ

4.3 КАК ПЕРЕДАЮТ СВЕТ?

4.4 РАСПРОСТРАНЕНИЕ СВЕТА ПРИ ПОЛНОМ ОТРАЖЕНИИ

ГЛАВА 5. СВЕТОВОД - ПОСРЕДНИК МЕЖДУ ПЕРЕДАТЧИКОМ И ПРИЕМНИКОМ

5.1 ОСЛАБЛЕНИЕ ОЗНАЧАЕТ ПОТЕРЮ СВЕТОВОЙ ЭНЕРГИИ

5.2 РАЗНИЦА ВО ВРЕМЕНИ ПРОБЕГА ОГРАНИЧИВАЕТ ПРОПУСКНУЮ СПОСОБНОСТЬ ЛИНИИ СВЯЗИ

5.3 ПРОПУСКНАЯ СПОСОБНОСТЬ ВОЛОКОННЫХ СВЕТОВОДОВ

5.4 ОПТИЧЕСКИЕ КАБЕЛИ, ИХ КОНСТРУКЦИИ И СВОЙСТВА

ГЛАВА 6. ИСТОЧНИКИ СВЕТА - СВЕТОИЗЛУЧАЮЩИЙ ДИОД И ЛАЗЕР

6.1 ЧТО ОЗНАЧАЕТ ИМПУЛЬСНЫЙ РЕЖИМ?

6.2 ТИП ИСТОЧНИКА ОПРЕДЕЛЯЕТ МОЩНОСТЬ

6.3 ПРОБЛЕМА ВЫВОДА СВЕТОВОЙ ЭНЕРГИИ

6.4 СРОК СЛУЖБЫ ИСТОЧНИКОВ СВЕТА

6.5 ЛАЗЕР ИЛИ СВЕТОИЗЛУЧАЮЩИЙ ДИОД?

ГЛАВА 7. СВЕТОВОЙ СИГНАЛ НА ПРИЕМНОМ КОНЦЕ ЛИНИИ

7.1 НЕОБХОДИМОСТЬ ПРЕОБРАЗОВАНИЯ СВЕТА В ЭЛЕКТРИЧЕСКИЙ ТОК

7.2 ФОТОДИОДЫ ИСПОЛЬЗУЮТ ВНУТРЕННИЙ ФОТОЭФФЕКТ

7.3 ШУМ - СИЛЬНЕЙШИЙ ВРАГ ТЕХНИКИ СВЯЗИ

7.4 КАКОЙ ДЛИНЫ МОЖЕТ БЫТЬ ОПТИЧЕСКАЯ ЛИНИЯ ПЕРЕДАЧИ?

ГЛАВА 8. МНОГОЦЕЛЕВАЯ АБОНЕНТСКАЯ СЕТЬ
Заказать написание новой работы



Дисциплины научных работ



Хотите, перезвоним вам?