Общая характеристика производства. Физико-химические свойства глинистого сырья. Пластичные свойства глин. Оценка влияния выбросов Кирпичного завода ООО "Ажемак" на окружающую среду. Особенности кислотных дождей. Влияние углеводорода на окружающую среду.
Аннотация к работе
В техническом понимании глинами называют горные землистые породы, способные при затворении водой образовывать пластичное тесто, которое в высушенном состоянии обладает некоторой прочностью (связностью), а после обжига приобретает камнеподобные свойства. Так, по количеству красящих оксидов, в частности, оксида железа, в сочетании с содержанием оксидов кальция и магния можно судить о цвете черепка из данного сырья, по количеству оксида кальция, магния и диоксида углерода - о количестве примесей кальцита и доломита, по количеству оксида алюминия в сочетании с содержанием оксидов натрия, калия и железа - о температуре плавления глины, по количеству оксида кальция, магния - о характере поведения керамического черепка при обжиге в диапазоне температур 700-900°С и свыше 1100°С и т.д. Состав и количество водорастворимых солей в глине дает представление о том, появятся ли высолы на поверхности изделий и позволяют выбрать методы их устранения. Какие именно глинистые минералы формируют данное сырье, какие примеси присутствуют в сырье: количество свободного кварца, полевых шпатов, кальцита, доломита, количество и формы железистых соединений и т.д. В природе, однако, редко встречаются глины, имеющие в своем составе один минерал, поэтому их классифицируют по преимущественному содержанию того или иного минерала.Окружающая среда - это среда обитания, представляющая собой совокупность всех материальных тел, сил и явлений природы. Она включает любую деятельность человека, находящуюся в непосредственном контакте с живыми организмами. Проблема влияния промышленности и сельского хозяйства на окружающую среду носит глобальный характер, что и обусловило ее важность. Промышленное развитие влечет развитие процессов: индустриализацию, урбанизацию, рост численности населения. Практически любое промышленное изделие начинается с сырья, добываемого из недр планеты или вырастающего на ее поверхности.
Введение
Для выпуска кирпича методом пластического формования в мае 2000 года запущен в эксплуатацию кирпичный завод с оборудованием испанской фирмы «AGEMAG».
Завод расположен в Республике Башкортостан, в с. Толбазы Аургазинского района, в 80 км от г. Уфы по трассе Уфа-Оренбург. Имея небольшой штат работников - 110 человек, завод выпускает более 10 млн. штук кирпича в год. В настоящее время завод выпускает керамический пустотный одинарный кирпич красных и светлых тонов.
Рис.1 Место расположения Кирпичного завода ООО «Ажемак» на карте
Рис.2 Место расположения Кирпичного завода ООО «Ажемак» на схеме
Керамический кирпич обычно применяется для возведения несущих и самонесущих стен и перегородок, одноэтажных и многоэтажных зданий и сооружений, внутренних перегородок, заполнения пустот в монолитно-бетонных конструкциях, кладки фундаментов, внутренней части дымовых труб, промышленных и бытовых печей. Стоит разделить преимущества рядового (строительного) и лицевого кирпича. Последний применяется практически во всех областях строительства. Лицевой кирпич изготавливается по специальной технологии, которая придает ему массу преимуществ. Лицевой кирпич должен быть не только красивым, но и надежным. Облицовочный кирпич обычно применяется при возведении новых зданий, но также с успехом может быть использован и в различных реставрационных работах. Его используют при облицовке цоколей зданий, стен, заборов, для внутреннего дизайна.
Сырьевые материалы, используемые в производстве керамического кирпича, подразделяются на пластичные (глинистые), непластичные (отощающие, выгорающие и плавни).
К глинистым материалам относятся глины и каолины. Согласно ГОСТ 9169-75 глинистое сырье представляет собой горные породы, состоящие в основном из глинистых минералов (каолинит, монтмориллонит, гидрослюда).
В техническом понимании глинами называют горные землистые породы, способные при затворении водой образовывать пластичное тесто, которое в высушенном состоянии обладает некоторой прочностью (связностью), а после обжига приобретает камнеподобные свойства.
Согласно ГОСТ 9169-75 глинистое сырье классифицируют: - по огнеупорности;
- по содержанию Al2О3;
- по содержанию красящих оксидов (Fe2О3, ТІО2,);
- по содержанию водорастворимых солей;
- по минеральному составу;
- по содержанию тонкодисперсных фракций;
- по содержанию крупнозернистых включений;
- по пластичности;
- по механической прочности на изгиб в сухом состоянии;
- по спекаемости;
- по содержанию свободного кремнезема.
Минералогический состав глин представлен каолинитом, монтмориллонитом, гидрослюдой и другими минералами и примесями.
Органические примеси окрашивают глину в черный цвет. В обжиге они выгорают, выделяя газы и обусловливая восстановительную среду внутри черепка. Эти явления могут являться источником определенных пороков («пузыря») при обжиге изделий с плотным черепком.
Физико- химические свойства: При физико-химическом анализе сырья обязательными являются следующие определения: макроскопическая характеристика, химический состав, содержание и состав водорастворимых солей, минералогический состав по методам дериватографического и рентгенофазового анализов.
Макроскопическое описание пробы глинистого сырья выполняют с целью определения внешнего вида, макроструктуры, цвета и плотности. При этом также фиксируют наличие включений и степень вскипания пробы при взаимодействии с 10 %-ным раствором соляной кислоты.
Глинистые минералы в основном представляют собой гидратированные алюмосиликаты кальция, магния, железа и т.д. и поэтому традиционный химический анализ дает первое общее представление о составе сырья и некоторых будущих свойствах изделий. Так, по количеству красящих оксидов, в частности, оксида железа, в сочетании с содержанием оксидов кальция и магния можно судить о цвете черепка из данного сырья, по количеству оксида кальция, магния и диоксида углерода - о количестве примесей кальцита и доломита, по количеству оксида алюминия в сочетании с содержанием оксидов натрия, калия и железа - о температуре плавления глины, по количеству оксида кальция, магния - о характере поведения керамического черепка при обжиге в диапазоне температур 700-900°С и свыше 1100°С и т.д.
Состав и количество водорастворимых солей в глине дает представление о том, появятся ли высолы на поверхности изделий и позволяют выбрать методы их устранения. Нет необходимости говорить о том, насколько важно проведение данного анализа при испытании глинистого сырья для производства лицевого кирпича.
Далее необходимо знать (желательно как можно полнее) минералогический состав сырья. Какие именно глинистые минералы формируют данное сырье, какие примеси присутствуют в сырье: количество свободного кварца, полевых шпатов, кальцита, доломита, количество и формы железистых соединений и т.д.
Обычно сырье имеет полиминеральный состав и в нем присутствуют одновременно несколько глинистых минералов, имеющих различные технологические свойства. Так, например, присутствие в сырье каолинита повышает огнеупорность изделий и обязывает технологов обратить особое внимание на режимы формования и обжига изделий. Монтмориллонитовые глины по сравнению с каолинитовыми и гидрослюдистыми имеют наиболее высокую степень дисперсности, наибольшую набухаемость, высокую пластичность, связующую способность, усадку и чувствительность к сушке и обжигу. Гидрослюдистые глины занимают среднее положение между каолинитовыми и монтмориллонитовыми. В природе, однако, редко встречаются глины, имеющие в своем составе один минерал, поэтому их классифицируют по преимущественному содержанию того или иного минерала.
Данные по минералогическому составу (особенно количественные) получить довольно трудоемко и здесь привлекается большое количество различных дорогостоящих физико-химических методов исследования. В частности рентгенофазовый анализ, позволяющий увидеть количество присутствующих в сырье кристаллических соединений. Эти данные необходимо сопоставлять с результатами химического и других анализов. Рентгеновский анализ позволяет более определенно и достоверно судить о реальном, всегда сложном, минералогическом составе сырья, ибо хорошо известно, что все технологические и эксплуатационные свойства керамической продукции определяются именно особенностями минералогического состава исходного глинистого сырья. Напомним, что рентгеновский метод исследования базируется на интерфере рентгеновских лучей от кристаллических решеток минералов и последующей их интерференции по вполне определенным физическим законам. Каждое кристаллическое образование имеет свой специфический набор (спектр) дифракционных отражений, по которым это соединение надежно идентифицируется и определяется количественное содержание в сложной естественной или искусственной смеси.
Однако, для идентификации относительно рентгено-аморфных соединений, с несовершенной кристаллической структурой, в частности, глинистого минерала - монтмориллонита, рентгеновского анализа недостаточно для получения полной картины фазового состава и он дополняется дериватографическим анализом.
Дериватографический анализ основан на определении различных тепловых эффектов при нагревании образца. Кривая ДТА характеризует основные физико-химические процессы, происходящие в пробе при ее нагревании.
Эндотермические эффекты, идущие с поглощением тепла, свидетельствуют о разрушении исходных кристаллических или рентгено-аморфных соединений; процессах плавления и т.п. Экзотермические эффекты на кривой ДТА, происходящие с выделением тепла, обычно говорят о процессах новой кристаллизации, выгорании органики и т.д.
Определяем керамические характеристики сырья: засоренность крупнозернистыми включениями, активность карбонатных включений, гранулометрический состав, пластичность, чувствительность к сушке, показатель критической влажности, спекаемость и огнеупорность. Кроме этого для исследования термических свойств глины используют методы дилатометрического и дериватографического анализов. На этом же этапе определяют дисперсность отощающих добавок.
Содержание крупнозернистых включений выполняют методом промывки пробы на сите 0,5 мм с последующим рассевом на ситах 5, 3, 2 и 1 мм. Данный анализ дает представление о содержании в пробе крупных каменистых включений, включений кварца, карбонатов, органики и др. На этом этапе также определяют содержание и активность крупных карбонатных включений. Результаты данного анализа используются при решении вопроса о необходимой степени измельчения исходного глинистого сырья.
Для получения информации о глинистой части пробы делают гранулометрический анализ методом пипетки, позволяющий определить размеры частиц глинистого сырья. Так глинистые минералы, имеющие размеры в несколько микрон и менее будут, естественно, находиться в таких фракциях (0,005-0,001 и менее 0,001 мм.), а, например, свободный кварц в наиболее крупных фракциях (свыше 0,01 мм). Для определения качественного и количественного состава глинистого сырья в дальнейшем данные, полученные с помощью других анализов, сверяют с результатами гранулометрического анализа.
Пластичные свойства глин характеризуются влажностью и изменяются для одной и той же глины в зависимости от количества воды. Переход глины от одной консистенции к другой совершается при определенных значениях влажности, которые получили название пределов пластичности. Влажность, при которой глина переходит из пластичного состояния в текучее, называется верхним пределом пластичности, или границей текучести.
Влажность, при которой глина переходит из пластичного состояния в хрупкое, называется нижним переделом пластичности или границей раскатывания. Разность между верхним пределом и нижним пределами пластичности являются характеристикой пластичности глин, и называется числом пластичности. Определяют эту характеристику с помощью прибора Васильева. За рубежом пользуются показателем пластичности по Аттербергу.
По числу пластичности глины классифицируются как высокопластичные с числом пластичности более 25, среднепластичные - 15-25, умереннопластичные - 7-15, малопластичные - менее 7 и непластичные, которые вообще не дают пластичного теста. Показатель пластичности коррелирует с гранулометрическим составом глины и естественно с минералогическим составом, т. Е. определяется содержанием глинистого вещества в сырье.
Исследование сушильных свойств сырья занимает весьма существенное место в лабораторно-технологических исследованиях. Сушильные свойства сырца, его формуемость напрямую связаны с количеством монтмориллонита. Чем его больше, тем выше чувствительность сырья к сушке. Однако это утверждение относится к глинам с общим содержанием глинистого вещества не менее 30-40 %. глина углеводород кислотный пластичный
2. Воздействие выбросов Кирпичного завода ООО «Ажемак» на окружающую среду
Выбросы в атмосферу происходят в процессе обжига кирпича в специальных печах. Выбросы происходят по причине сгорания топлива для получения тепла, необходимого для обжига, и от влияния высоких температур на саму глину. Выбросы пыли также возникают в результате открытой карьерной добычи глины. Возможны следующие выбросы в атмосферу: • Оксид азота возникает при использовании в обжиге углеводного топлива. Это вызывает загрязнение воздуха вокруг объекта и является причиной возникновения фотохимического смога и кислотных дождей.
• Двуокись серы получается от воздействия высоких температур на глину. Количество произведенной двуокиси серы зависит от содержания серы в глине. Глина с низким содержанием серы обычно содержит менее 0.1% серы в своем составе. Двуокись серы вызывает местное загрязнение воздуха и является причиной возникновения кислотных дождей. Возможен дополнительный выброс двуокиси серы в случае использования мазута в печах для обжига.
•Выбросы хлоридов и фторидов происходят при обжиге по причине присутствия данных материалов в самой глине.
• Монооксид углерода и двуокись углерода возникают при обжиге углеводородного топлива. Монооксид углерода вызывает местное загрязнение воздуха, а углекислый газ является причиной глобального потепления.
• Возможен выброс дополнительных органических компонентов, включая токсины, такие, как диоксины, если используются отходы производства при обжиге кирпича в специальных печах.
• Пыль и различные частицы могут поступать в атмосферу из печей, появляясь в процессе обжига кирпича и от использования при обжиге мазута, угля или регенерированного масла.
• Пыль, возникающая от передвижения грузовиков по грязным или грунтовым дорогам, или по причине ветра может распространяться за пределы участка добычи глины и быть причиной неудобства или наносимого ущерба собственности пли близлежащей растительности.
Возможное загрязнение стока дождевой воды частицам глины или кирпичной пыли, что может привести к обесцвечиванию или появлению осадка, если дождевая вода попадет в основной водный поток, в котором также может содержаться масло или топливо от автотранспорта.
Если соль от глазурования или топливо хранятся на объекте, возникает риск загрязнения почвы по причине утечки вредных веществ.
При добыче глина так же идет немалое воздействие.
Основными видами воздействия на среду: - изъятие природных ресурсов (земельных, водных);
- загрязнение воздушного бассейна выбросами газообразных и взвешенных веществ;
- шумовое воздействие;
- изменение рельефа территории.
Негативное воздействия на состояние экосистемы заключаются в максимальной нагрузки технологического процесса на каждый из компонентов окружающей среды. Воздействие на здоровье людей, объекты животного мира и растительность, а также рекреационные территории.
А так же оказывает негативное влияние на атмосферный воздух в результате пыле- и газообразования.
При работе автомобильного транспорта и спецтехники загрязнение атмосферы в зоне влияния происходит при работе двигателей дорожно-строительной техники и автотранспорта, выделяющих азота диоксид, азота оксид, бензин, оксид углерода, оксид серы и сажу.
Основными источниками внешнего шума являются двигатели дорожно-строительной техники.
2.1 Вредное воздействие на атмосферу и окружающую природную среду CO и NO2
При производстве керамического кирпича в туннельной сушилке и туннельной печи для обжига в качестве топлива используется природный газ.
Продукты горения топлива содержания вредных веществ СО и NO2, которые удаляются с дымовыми газами и оказывают вредное воздействие на атмосферу и окружающую природную среду. СО оказывает вредное воздействие на организм человека (угарный газ). При вдыхании оксид углерода блокирует поступление кислорода кровь и вследствие этого вызывает головные боли, тошноту, а в более высоких концентрациях - даже смерть. ПДК СО при кратковременном контакте составляет 30 мг/м3, при длительном контакте - 10 мг/м3. Если концентрация оксида углерода во вдыхаемом воздухе превысит 14 мг/м3, то возрастает смертность от инфаркта миокарда. Уменьшение выбросов оксида углерода достигается путем дожигания отходящих газов.
Окись углерода (СО) - бесцветный газ, не имеющий запаха, известен также под названием «угарный газ». Образуется в результате неполного сгорания ископаемого топлива (угля, газа, нефти) в условиях недостатка кислорода и при низкой температуре. В среднем по выбросам Кирпичного завода ООО «Ажемак» зафиксировано 25,3758 т/год.
Рис. 3 Динамика выброса окиси углерода (СО)
Оксиды азота (оксид и диоксид азота) - газообразные вещества: монооксид азота NO и диоксид азота NO2 объединяются одной общей формулой NOX . При всех процессах горения образуются окислы азота, причем большей частью в виде оксида. Чем выше температура сгорания, тем интенсивнее идет образование окислов азота. Количество окислов азота, поступающих в атмосферу, составляет 7.2918 т/год.
2.2 Воздействие сернистого ангидрида (SO3) на окружающую среду
Человеческая деятельность приводит к тому, что загрязнения поступают в атмосферу в основном в двух видах - в виде аэрозолей (взвешенных частиц) и газообразных веществ.
Общее количество аэрозолей, поступающих в атмосферу в течение года составляет 0,214 т.
Серный ангидрид образуется при окислении сернистого ангидрида. Конечным продуктом реакции является аэрозоль или раствор серной кислоты в дождевой воде, который подкисляет почву, обостряет заболевания дыхательных путей. Растения около таких предприятий обычно бывают густо усеяны мелкими некротическими пятнами, образовавшихся в местах оседания капель серной кислоты Кислотные дожди вызывают тяжелые последствия. Уже при РН менее 5,5 пресноводные рыбы чувствуют себя угнетенно, медленнее растут и размножаются, а при РН ниже 4,5 вообще не размножаются. Дальнейшее уменьшение РН приводит к гибели рыб, затем земноводных, а в конце концов - насекомых и растений: организмы не приспособлены к жизни в кислотах. К счастью, всеобщая гибель предотвращается почвой, которая не только фильтрует через себя дождевую воду, но и химически очищает ее, обменивая катионы Н на катионы натрия и калия. Кислотные дожди воздействуют и на почву, вызывая закисление ее, поскольку ионообменная способность почвы не беспредельна. Закисление отрицательно влияет на структуру, агрегатное состояние почвы, угнетает почвенную микрофлору и растения, вызывает их гибель. Это вредит лесам, сельскохозяйственным культурам.
Особенность кислотных дождей - их отдаленность от места выброса оксидов серы и азота и привязка к определенным географическим зонам, что связано с тем, что превращение оксидов серы и азота протекает сравнительно медленно, а выбросы заводских труб относятся ветрами. Так, максимальная концентрация серной кислоты достигается на расстоянии 250-300 км от места выброса SO3.
Рис. 4 Рост выбросов сернистого ангидрида
2.3 Влияние углеводорода на окружающую среду
Углеводороды - химические соединения углерода и водорода. К ним относят тысячи различных загрязняющих атмосферу веществ, содержащихся в несгоревшем бензине, жидкостях, применяемых в химчистке, примышленных растворителях и т. д.
Углеводороды - помимо того, что сами углеводороды токсичны, они под воздействием солнечного света дополнительно вступают в реакции с окислами азота, образуя озон и перекиси. Последние вызывают раздражение глаз, горла, носа, губят растения. Являются причиной раковых и предраковых поражений, весьма очевидны и этот класс веществ, вероятно, является главной причиной недавнего увеличения уровня заболеваемости раком.
Углеводороды перемещаются в атмосфере в виде взвешенных в воздухе микрочастиц. Они переносятся воздушными потоками и оседают в виде сухих или мокрых (дождь, роса и т.п.) отложений. Оседая в озерах и реках, они опускаются на дно. Некоторые проникают сквозь слой почвы в грунтовые воды.
Токсичность углеводородов в отношении аквакультур и птиц колеблется от умеренной до высокой. Некоторые наносят ущерб и приводят к гибели сельскохозяйственные и декоративные злаки.
2.4 Негативное влияние твердых отходов на окружающую среду
Твердые отходы попадают в атмосферу при сгорании топлива, а также в результате разнообразных технологических процессов. При работе, например, вращающихся печей для обжига пылевынос составляет 8-20% сухого сырья.
Сажа, как и любая мелкая пыль, засоряет дыхательные пути, раздражает их и может явиться причиной хронических заболевании носоглотки. Попадая в Легкие, она вызывает и легочные заболевания. Но главная опасность сажи заключается в том, что она может являться переносчиком канцерогенных веществ.
Рис. 3 Рост выбросов твердых отходов
2.5 Влияние ЛОС на окружающую среду
Летучие органические соединения (ЛОС) - это химические субстанции, которые поднимаются в атмосферу при распылении краски, при испарении растворителей, соединяясь с окисью азота и озоном.
Нельзя не отметить, что помимо загрязнения окружающей среды, летучие органические соединения крайне негативно влияют на здоровье человека, являясь причиной заболеваний верхних дыхательных путей
Рис. 7 Рост загрязнения атмосферы ЛОС
Вывод
Окружающая среда - это среда обитания, представляющая собой совокупность всех материальных тел, сил и явлений природы. Она включает любую деятельность человека, находящуюся в непосредственном контакте с живыми организмами. Окружающая среда является сферой деятельности человека.
Проблема влияния промышленности и сельского хозяйства на окружающую среду носит глобальный характер, что и обусловило ее важность.
Промышленное развитие влечет развитие процессов: индустриализацию, урбанизацию, рост численности населения. Это ведет к обострению проблем: - ущерба, наносимого производством природной среде;
- рост недостатка сырья и энергии;
- развитие городских территорий.
Практически любое промышленное изделие начинается с сырья, добываемого из недр планеты или вырастающего на ее поверхности. На пути к промышленным предприятиям сырье что-то теряет, значительная часть его превращается в отходы.
Подсчитано, что на современном уровне развития технологии 9% и более сырья уходит в отходы. Поэтому и громоздятся горы пустой породы, небо застилают дымы сотен труб, вода отравлена промышленными стоками, вырубаются миллионы деревьев.
Охрана природы - задача нашего века, проблема, ставшая социальной. Снова и снова мы слышим об опасности, грозящей окружающей среде, но до сих пор многие из нас считают их неприятным, но неизбежным порождением цивилизации и полагают, что мы еще успеем справиться со всеми выявившимися затруднениями.
Однако воздействие человека на окружающую среду приняло угрожающие масштабы. Чтобы в корне улучшить положение, понадобятся целенаправленные и продуманные действия. Ответственная и действенная политика по отношению к окружающей среде будет возможна лишь в том случае, если мы накопим надежные данные о современном состоянии среды, обоснованные знания о взаимодействии важных экологических факторов, если разработает новые методы уменьшения и предотвращения вреда, наносимого Природе Человеком.
Список литературы
1. Болятко В. В. , Демин В. М. , Евланов В. В. , Ксенофонтов А. И. , Скотникова О. Г . Основы экологии и охраны окружающей среды. М.: МИФИ. 2008-320с.
2. Ахмадеев В. М.,Байбурина Т.А. Экология человека. Издательство: РИО БАШГУ. 1999г. 87 с.
3. Хаханина Т.И. (ред.) Химия окружающей среды. Издательство: Юрайт в.о., 2010г. 130 с.
4. Соколов Р. С. Химическая технология. Издательство: Гуманитарный издательский центр ВЛАДОС, 2000г. 370 с.
5. Мотузова Г. В. , Безуглова О. С. Экологический мониторинг почвы. М.: Академический проект, 2009- 240с.
6. Зайцев В. А. Промышленная экология. М.: Бином. Лаборатория знаний, 2012- 389с.
7. Довженко И.Г. Интенсификация спекания керамического кирпича с применением побочного продукта алюминиевого производства. Журнал , № 12 за 2011 год (часть 2) - 341- 344с.
8. Назаренко Н.В. , Петин А.Н. , Фурманова Т.Н Воздействие на окружающую среду. Журнал, № 6 за 2012 год .
9. Мельников А. А. Проблемы окружающей среды и стратегия ее сохранения. М.: Академический проект , 2009- 744с.
10. Гридэл Т. Е. , Алленби Б. Р. Промышленная экология. М.: Юнити-Дана , 2012- 527с.
11. Прикладная токсикология. 2010, Том I, № 1(1). М.: Издательский Дом "ВЕЛТ" , 2010- 81с.
12. Тарасов А. В. , Смирнова Т. В. Основы токсикологии. М.: Учебно-методический центр по образованию на железнодорожном транспорте , 2006- 160с.
13. Хотунцев Ю.Л. Экология и экологическая безопасность: Учеб. пособие. М.: ACADEMA, 2010. - 480с
14. Орлов Д.С. Экология и охрана биосферы при химическом загрязнении: Учеб. пособие / Орлов Д.С, Садовникова Л.К., Лозановская И.Н. - М.: Высшая школа, 2009. - 334с.
15. Трифонова Т. А. , Селиванова Н. В. , Мищенко Н. В. Прикладная экология. М.: Академический проект , 2007- 384с.