Влияние гасителей энергии на сопряжение бьефов за водопропускными сооружениями с конусными затворами - Автореферат

бесплатно 0
4.5 189
Обеспечение безаварийной работы водосбросных гидротехнических сооружений. Регулирование расхода сбросной воды и гашение энергии водопропускных сооружений. Эксплуатация гидроузлов с конусными затворами. Характеристики кавитационных гасящих устройств.


Аннотация к работе
Создание комплекса методов расчета и конструкций устройств нижнего бьефа за конусными затворами, учитывающие результаты теоретических и экспериментальных исследований гидравлических условий их работы, приводящие к повышению надежности функционирования сооружений, является решением одной из проблем экономики страны, некоторые аспекты которой рассмотрены в данной работе. Основная цель работы заключалась в определении влияния различных типов гасителей энергии на гашение избыточной энергии потока в нижнем бьефе водопропускных сооружений, оборудованных конусными затворами и в создании на основе теоретических и экспериментальных исследований метода прогнозирования местных размывов при работе рассмотренных типов гасителей. На основе исследований предложены расчетные зависимости для определения значений коэффициентов лобового сопротивления различных типов гасителей энергии, а также в работе экспериментально обоснованы параметры, влияющие на местный размыв в нижнем бьефе водопропускных сооружений, оборудованных конусными затворами. Предлагаемые в диссертации научно обоснованные методы определения и прогнозирования местного размыва, а также зависимости для оценки влияния различных типов гасителей энергии на сопряжение бьефов и размыв позволяют запроектировать более надежные конструкции в нижнем бьефе водопропускных сооружений, оборудованных конусными затворами. Основные схемы установки конусных затворов в зависимости от вида истечения потока можно подразделить таким образом: свободное истечение из конусного затвора в атмосферу; истечение из конусного затвора с насадками; затопленное истечение из конусного затвора; истечение из конусного затвора в камеру гашения; истечение из конусного затвора в закрытый водовод.Основные выводы, полученные на основе выполненных теоретических и экспериментальных исследований, могут быть сформулированы следующим образом: На основании обобщения литературных источников было установлено, что мало разработано надежных конструкций гасящих устройств при истечении потока в атмосферу, а также недостаточно проведено исследований местного размыва в нижнем бьефе водопропускных сооружений, оборудованных конусными затворами. Экспериментальные исследования изменения второй сопряженной глубины потока в зависимости от типа и размера гасителей энергии при работе конусным затвором показали, что гасители с вертикальной передней гранью дают значительное снижение значений второй сопряженной глубины по сравнению с гасителями с наклонной передней гранью. Гасители, имеющие параметры с/(s s0)=0,33 (рис.2.) приводят к существенному уменьшению значений второй сопряженной глубины, и значения коэффициента лобового сопротивления для этих гасителей больше, чем для гасителей энергии с параметрами с/(s s0)=0,25. Экспериментальные исследования влияния глубины воды в нижнем бьефе на величину и форму воронки размыва при работе рассмотренных типов гасителей энергии потока за конусным затвором показали, что по мере увеличения глубины воды в нижнем бьефе увеличивается глубина в воронке размыва, а абсолютные глубины размыва (hp) уменьшаются. Предложены обобщенные зависимости влияния глубины воды в нижнем бьефе (затопления гидравлического прыжка) на расстояния до центра воронки размыва в зависимости от открытия затвора и типа установленного гасителя энергии, а также обобщенные зависимости влияния типа гасителя энергии и глубины воды в нижнем бьефе на глубину размыва в зависимость от открытия затвора.

Вывод
Основные выводы, полученные на основе выполненных теоретических и экспериментальных исследований, могут быть сформулированы следующим образом: На основании обобщения литературных источников было установлено, что мало разработано надежных конструкций гасящих устройств при истечении потока в атмосферу, а также недостаточно проведено исследований местного размыва в нижнем бьефе водопропускных сооружений, оборудованных конусными затворами.

На основании проведенных лабораторных исследований были экспериментально обоснованы параметры гидравлического прыжка за конусным затвором, а также предложены некоторые конструкции гасящих устройств нижнего бьефа, улучшающих кинематическую структуру потока на водобое и рисберме.

Экспериментальные исследования изменения второй сопряженной глубины потока в зависимости от типа и размера гасителей энергии при работе конусным затвором показали, что гасители с вертикальной передней гранью дают значительное снижение значений второй сопряженной глубины по сравнению с гасителями с наклонной передней гранью. По данным эксперимента получены обобщенные зависимости для рассмотренных типов гасителей энергии разной высоты.

Гасители, имеющие параметры с/(s s0)=0,33 (рис.2.) приводят к существенному уменьшению значений второй сопряженной глубины, и значения коэффициента лобового сопротивления для этих гасителей больше, чем для гасителей энергии с параметрами с/(s s0)=0,25. Однако следует отметить, что при работе гасителей с с/(s s0)=0,33 возможно образование второго гидравлического прыжка при степени затопления первого гидравлического прыжка 1,1. В дальнейшем, нами рассматривались только гасители энергии с параметрами с/(s s0)=0,25.

4. На основании экспериментальных исследований предложены зависимости для определения коэффициента лобового сопротивления и второй сопряженной глубины для рассмотренных типов гасителей энергии. Для этих зависимостей осуществлена аппроксимация, что позволяет определяемые величины получать с графиков или находить по указанным формулам.

5. Оценив картину размывов, следует отметить, что при рассматриваемых типах гасителей и разных открытиях затвора наблюдалась аналогичная по характеру и плановому размещению картина формирования воронок размывов, но с другими абсолютными и относительными параметрами. При любых открытиях на модели наблюдались двухполюсные воронки размыва, симметрично расположенные относительно центра струи; плановый характер воронок размыва имеет весьма сложное очертание, что связано с переформированием струи потока при рассматриваемых открытиях затвора.

6. Тип исследуемого гасителя энергии оказывает существенное влияние на местный размыв. При всех рассмотренных режимах глубина воронки размыва и расстояние до центра воронки размыва существенно уменьшалось при работе 3-го типа гасителей энергии.

7. На основании экспериментальных исследований предложены зависимости глубины размыва и расстояния до центра воронки размыва, а также получены эмпирические формулы для определения названных выше параметров.

8. Экспериментальные исследования влияния глубины воды в нижнем бьефе на величину и форму воронки размыва при работе рассмотренных типов гасителей энергии потока за конусным затвором показали, что по мере увеличения глубины воды в нижнем бьефе увеличивается глубина в воронке размыва, а абсолютные глубины размыва (hp) уменьшаются. Особое влияние на этот процесс оказывает тип гасителя энергии, абсолютная глубина воронки размыва существенно уменьшалась при работе 3-го типа гасителей энергии. Таким образом, отмечено, что гаситель с вертикальной передней гранью работает эффективнее и показывает значительное уменьшение глубины воронки размыва по сравнению с гасителями с наклонной передней гранью.

9. При расчете концевых частей нижнего бьефа, оборудованных конусными затворами и назначении глубины заложения зуба в конце рисбермы необходимо учитывать влияние глубины потока в нижнем бьефе и типа гасителя энергии на расстояние до центра воронки размыва.

10. Предложены обобщенные зависимости влияния глубины воды в нижнем бьефе (затопления гидравлического прыжка) на расстояния до центра воронки размыва в зависимости от открытия затвора и типа установленного гасителя энергии, а также обобщенные зависимости влияния типа гасителя энергии и глубины воды в нижнем бьефе на глубину размыва в зависимость от открытия затвора. Для этих кривых осуществлена аппроксимация, что позволяет искомые величины получать с графиков или находить по формулам.

11. Для водопропускных сооружений, оборудованных конусными затворами, рекомендуется устанавливать гасители энергии с вертикальной передней гранью, a глубину зуба после рисбермы назначать l,5hkp. Результаты проведенных исследований размывов могут быть применены для галечникового русла. В дальнейших исследованиях нижних бьефов за водопропускными сооружениями, оборудованными конусными затворами следует разработать другие гасящие устройства и оценить их влияние на местный размыв.

ОСНОВНЫЕ ПОЛОЖЕНИЯ ДИССЕРТАЦИИ ОПУБЛИКОВАНЫ В СЛЕДУЮЩИХ РАБОТАХ

1. Кавешников А.Т., Сивак М.Ю. Гашение энергии в нижнем бьефе водопропускных сооружений, оборудованных конусными затворами // Природообустройство и рациональное природопользование - необходимые условия социально-экономического развития России // Сб. научных трудов. М.:МГУП, 2005, ч.1.

2. Кавешников А.Т., Сивак М.Ю. Влияние различных типов гасителей на вторую сопряженную глубину при работе одним конусным затвором // Роль природообустройства в обеспечении устойчивости функционирования и развития экосистем // Материалы международной научно-практической конференции. М.:МГУП, 2006, ч.1.

3. Кавешников А.Т., Сивак М.Ю. Гашение энергии потока в нижнем бьефе водопропускных сооружений с конусными затворами // Гидротехническое строительство // М.: Энергопромпрогресс, 2006, №9.

4. Сивак М.Ю. Экологическая обстановка в нижнем бьефе за сооружениями, оборудованными конусными затворами // Глобальные экологические проблемы современности: Материалы 6-й научно-практической конференции “Духовность и экология”. М.: МГУП, 2004.

5. Сивак М.Ю. Влияние различных типов гасителей энергии на экологическую обстановку за водопропускными сооружениями // Экология и экологическая культура: Материалы 7-й научно-практической конференции “Духовность и экология”. М.: МГУП, 2005.

Размещено на .ru
Заказать написание новой работы



Дисциплины научных работ



Хотите, перезвоним вам?