Открытие углеродных волокон, их классификация, состав и текстильные формы. Способы получения УВ из химических или природных органических волокон, их применение в составе композиционных материалов. Свойства однонаправленных углепластиков, наполненных УВ.
Аннотация к работе
Санкт-Петербургский политехнический университет Петра Великого Институт металлургии, машиностроения и транспорта Выполнила: студентка группы № 43317/1 Овчарова М.А.Композиционные материалы, представляют собой металлические и неметаллические матрицы (основы) с заданным распределением в них упрочнителей (волокон, дисперсных частиц и др.); при этом эффективно используются индивидуальные свойства составляющих композиции. Композиционные материалы позволяют иметь заданное сочетание разнородных свойств: высокой удельной прочности и жесткости, жаропрочности, износостойкости, теплозащитных свойств и др. Спектр свойств композиционных материалов невозможно получить при использовании обычных материалов. Благодаря композиционным материалам стал возможен новый качественный скачок в увеличении мощности двигателей, уменьшении массы машин и конструкций и повышении весовой эффективности транспортных средств и авиационно-космических аппаратов. Матрица придает требуемую форму изделию, влияет на создание свойств композиционного материала, защищает арматуру от механических повреждений и других воздействий среды.Углеродные волокна впервые были получены Эдисоном еще в 1882г. Интерес к углеродным волокнам, появившийся в 1960-е годы, обусловлен тем, что в отличие от стеклянных (а также органических) волокон они обладают весьма высоким модулем упругости, специфическими тепло-и электрофизическими свойствами. В последующие годы ученым и технологам удалось значительно повысить и прочность углеродных волокон; уже сейчас по своей удельной прочности углеродные волокна в качестве армирующих материалов не только не уступают другим типам волокон, но и успешно конкурируют с ними. Работы по улучшению характеристик углеродных волокон и на основе полиакрилонитрила, и на основе пеков продолжаются, в том числе в направлении совершенствования технологии их производства. Характеристики первых углеродных волокон на основе ПАН были невысоки, но постепенно технология совершенствовалась и уже через 10 лет (к 1970 г.) были получены углеродные волокна на основе ПАН-волокон с пределом прочности 2070 МПА и модулем упругости 480 ГПА.Углеродное волокно обычно получают термической обработкой химических или природных органических волокон, при которой в материале волокна остаются главным образом атомы углерода. Первый из них представляет собой окисление исходного (полиакрилонитрильного, вискозного) волокна на воздухе при температуре 250 °C в течение 24 часов. После окисления следует стадия карбонизации - нагрева волокна в среде азота или аргона при температурах от 800 до 1500 °C.Углеродные волокна можно получать из многих полимерных волокон. В зависимости от режима термообработки углеродные волокна подразделяются на карбонизованные и графитизированные. К высококачественным волокнам относятся: 1) высокопрочные углеродные и высокомодульные графитовые волокна, углеродные волокна с повышенной прочностью и удлинением (на основе полиакрилонитрила (ПАН)) 2) высокомодульные графитовые волокна (на основе жидкокристаллических (мезофазных) пеков). К низкосортным волокнам или волокнам общего назначения относятся: 1) низкографитизированкые углеродные и графитовые волокна и материалы (на основе ПАН); 2) низкографитизированные углеродные и графитовые волокна и материалы (на основе обычных пеков). В зависимости от используемого прекурсора (вискозных или ПАН-волокон) и методов получения по своим свойствам УВ делятся на несколько основных типов, имеющих характеристики, приведенные в таблице 1.Основу углеродного волокна составляют плоские длинные узкие ленты поликонденсированного ароматического углерода с преимущественной ориентацией вдоль оси волокна. На границе фибриллы разделены микрофибриллярным пространством, представляющим собой вытянутые поры длиной 200-300А° и диаметром 10-20 А°, которые, также как и оси ориентированы вдоль оси волокна.Углеродные волокна характеризуются высокой силой натяжения, низким удельным весом, низким коэффициентом температурного расширения и химической инертностью. Изменяя условия термообработки, можно получить УВ с различными электрофизическими свойствами и использовать их в качестве разнообразных по назначению электронагревательных элементов, для изготовления термопар и др. Углеродные волокна превосходят все известные жаростойкие волокнистые материалы благодаря большой активной поверхности до 2500 м2/г, высокой прочности (3,6 Гн/м2). Изменяя условия термообработки, можно получить УВ с различными электрофизическими свойствами (удельное объемное электрическое сопротивление от 2?10-3 до 106 ом/см) и использовать их в качестве разнообразных по назначению электронагревательных элементов, для изготовления термопар и др. Благодаря низкой плотности (1,7-1,9 г/см?) по удельному значению (отношение прочности и модуля к плотности) механических свойств УВ превосходят все известные жаростойкие волокнистые материалы.