Цифровое моделирование системы управления электроприводом в пространстве исходных фазовых координат - Курсовая работа

бесплатно 0
4.5 189
Структурный синтез системы оптимального управления электроприводом постоянного тока. Система релейного управления с алгоритмами в различных фазовых пространствах. Требования, предъявляемые к силовому преобразователю, математическое описание объекта.


Аннотация к работе
Одной из наиболее актуальных задач, возникающих при синтезе систем автоматического управления (САУ) является снижение влияния различного рода дестабилизирующих факторов, обусловленных нелинейными характеристиками и прочими неидеальностями управляемых преобразователей мощности и электрических машин, ограниченной точностью изготовления и конечной жесткостью элементов кинематических цепей, влиянием окружающей среды и сложной природы технологических процессов на структуру и параметры электромеханических объектов управления (ОУ). К параметрическим относятся любые возмущения, результатом действия которых является изменение параметров или структуры объекта управления. Неточное знание модели движения ОУ приводит к тому, что линейные системы подчиненного регулирования, получившие наибольшее распространение в промышленности благодаря простоте синтеза и наладки, часто оказываются не в состоянии обеспечить требуемые показатели качества при изменившихся условиях функционирования ОУ, и требуют переналадки. Теоретически исчерпывающее решение задачи управления нестационарными объектами в условиях действия координатных возмущений дает идея построения систем, устойчивых при неограниченном увеличении коэффициента усиления. Реализация бесконечно больших коэффициентов усиления за счет использования скользящих режимов релейных элементов позволяет при определенных условиях обеспечить нулевую чувствительность системы управления к параметрическим и координатным возмущениям.Скользящий режим работы релейного элемента заключается в том, что при среднем значении сигнала на входе, равном нулю, под действием обратных связей, охватывающих этот элемент, он переключается с теоретически бесконечной частотой, а среднее значение выходного сигнала в это время по абсолютной величине меньше максимального, соответствующего одному из устойчивых состояний элемента. Задачи первого класса - это задачи, связанные с расчетом желаемого вида переходного процесса. Задачи второго класса - это задачи, в которых имеется регулятор, обеспечивающий заданное качество переходного процесса. Задачи второго класса, называемые также задачами АКР, заключаются в определении вариационными методами такого управления, которое минимизирует функционал, характеризующий отклонение траектории движения системы от желаемой. Решение задачи оптимизации второго класса позволяет синтезировать замкнутые САУ, обладающие низкой чувствительностью к параметрическим и координатным возмущениям благодаря реализации в контуре управления скользящего режима.Полоса пропускания преобразователя должна быть не менее предполагаемой частоты скользящего режима, которую в свою очередь целесообразно обеспечить в диапазоне . Эти приборы производятся фирмами ABB Semiconductors AG и Mitsubishi в таблеточных корпусах прижимной конструкции (press-pack) и рассчитаны на ток до 4,5 КА и напряжение до 6 КВ; Объединяет преимущества IGBT - малую мощность управления и малые коммутационные потери, широкую область безопасной работы с преимуществами GTO - низким прямым падением напряжения. Практически все типы преобразовательного оборудования мощностью от единиц киловатт до единиц мегаватт разрабатываются и производятся с использованием силовых модулей на основе IGBT. Имея лучшие характеристики - малые мощность управления и коммутационные потери, высокие скорости коммутации и стойкость к перегрузкам, они вытеснили в этих областях не только силовые биполярные транзисторы, но даже и запираемые тиристоры (GTO).Задача АКОР состоит в том, что для объекта, движение которого описывается системой линейных дифференциальных уравнений , , (3.1) где все координаты Xi и управление U заданы в относительных единицах, необходимо синтезировать алгоритм управления, доставляющий минимум функционалу качества Для синтеза алгоритма управления достаточно найти требующиеся коэффициенты функции Ляпунова Aij (Aij = Aji). Математическое описание объекта управления РТ имеет вид: (3.9) Объект управления регулятора скорости (РС) также как и при синтезе РТ имеет вид рис.3.1 и описывается системой уравнений вида (3.1) за исключением того, что управляющей функцией является напряжение РС UPC.Схема объекта управления регулятора тока (РТ) приведена на рис.4.1. Дифференциальное уравнение, описывающее движение объекта управления Схема объекта управления регулятора скорости (РС) приведена на рис.4.2. Дифференциальное уравнение, описывающее движение объекта управления Алгоритм управления РС имеет вид: , (4.20) где коэффициенты функции Ляпунова A12, A22 находим из уравнения Барбашина, учитывая что коэффициенты критерия качества k11=1, k12=k22=0: .Принимаем настройку всех контуров регулирования на модульный оптимум, что обеспечит данной системе максимальные запасы устойчивости. Передаточная функция регулятора тока где - коэффициент обратной связи по току;Для формирования желаемых траекторий управляемых координат (положения, скорости, тока) рассчитаем задатчик траектории, который представляет собой оптимальную по быстродействию позиционную систему второго поря
Заказать написание новой работы



Дисциплины научных работ



Хотите, перезвоним вам?