Цепи Маркова - Курсовая работа

бесплатно 0
4.5 23
Цепь Маркова как простой случай последовательности случайных событий, области ее применения. Теорема о предельных вероятностях в цепи Маркова, формула равенства Маркова. Примеры для типичной и однородной цепи Маркова, для нахождения матрицы перехода.


Аннотация к работе
Цепи Маркова названы так в честь выдающегося русского математика, Андрея Андреевича Маркова, который много занимался случайными процессами и внес большой вклад в развитие этой области. В последнее время можно услышать о применении цепей Маркова в самых разных областях: современных веб-технологиях, при анализе литературных текстов или даже при разработке тактики игры футбольной команды. Цепью Маркова называют такую последовательность случайных событий, в которой вероятность каждого события зависит только от предыдущего, но не зависит от более ранних событий.Цепью Маркова называют последовательность испытаний, в каждом из которых появляется одно и только одно из несовместных событий полной группы, причем условная вероятность того, что в-м испытании наступит событие , при условии, что в-м испытании наступило событие , не зависит от результатов предшествующих испытаний. Например, если последовательность испытаний образует цепь Маркова и полная группа состоит из четырех несовместных событий , причем известно, что в шестом испытании появилось событие , то условная вероятность того, что в седьмом испытании наступит событие , не зависит от того, какие события появились в первом, втором, …, пятом испытаниях. Часто при изложении теории цепей Маркова придерживаются иной терминология и говорят о некоторой физической системе , которая в каждый момент времени находится в одном из состояний: , и меняет свое состояние только в отдельные моменты времени то есть система переходит из одного состояния в другое (например из в ). Для цепей Маркова вероятность перейти в какое-либо состояние в момент зависит только от того, в каком состоянии система находилась в момент , и не изменяется от того, что становятся известными ее состояния в более ранние моменты. Так же в частности, после испытания система может остаться в том же состоянии («перейти» из состояния в состояние ).Однородной называют цепь Маркова, если условная вероятность (переход из состояния в состоянии ) не зависит от номера испытания. Под действием толчка частица с вероятностью смещается на единицу вправо и с вероятностью - на единицу влево. Переходной вероятностью называют условную вероятность того, что из состояния (в котором система оказалась в результате некоторого испытания, безразлично какого номера) в итоге следующего испытания система перейдет в состояние . Матрицей перехода системы называют матрицу, которая содержит все переходные вероятности этой системы: Так как в каждой строке матрицы помещены вероятности событий (перехода из одного и того же состояния в любое возможное состояние ), которые образуют полную группу, то сумма вероятностей этих событий равна единице. Другими словами, сумма переходных вероятностей каждой строки матрицы перехода равна единице: Приведем пример матрицы перехода системы, которая может находиться в трех состояниях ; переход из состояния в состояние происходит по схеме однородной цепи Маркова; вероятности перехода задаются матрицей: Здесь видим, что если система находилось в состоянии , то после изменения состояния за один шаг она с вероятностью 0,5 останется в этом же состоянии, с вероятностью 0,5 останется в этом же состоянии, с вероятностью 0,2 перейдет в состояние , то после перехода она может оказаться в состояниях ; перейти же из состояния в она не может.Обозначим через вероятность того, что в результате шагов (испытаний) система перейдет из состояния в состояние . Поставим перед собой задачу: зная переходные вероятности найти вероятности перехода системы из состояния в состояние за шагов. Другими словами, будем считать, что из первоначального состояния за шагов система перейдет в промежуточное состояние с вероятностью , после чего за оставшиеся шагов из промежуточного состояния она перейдет в конечное состояние с вероятностью . Введем обозначения: - интересующее нас событие (за шагов система перейдет из начального состояния в конечное ), следовательно, ; - гипотезы( за шагов система перейдет из первоначального состояния в промежуточное состояние ), следовательно, - условная вероятность наступления при условии, что имела место гипотеза (за шагов система перейдет из промежуточного состояния в конечное ), следовательно, По формуле полной вероятности, () Зная все переходные вероятности т.е зная матрицу перехода из состояния в состояние за один шаг, можно найти вероятности перехода из состояния в состояние за два шага, следовательно, и саму матрицу перехода ; по известной матрице можно найти матрицу перехода из состояния в состояние за три шага, и т.д.Распределение вероятностей в произвольной момент времени можно найти, воспользовавшись формулой полной вероятности Назовем стационарным распределением вектор , удовлетворяющий условиям Так как , то по условию теоремы из любого состояния можно попасть в любое за время с положительной вероятностью. Если выполнить условие теоремы 1, то вероятность того, что система находится в некотором состоянии , в пределе не зависит от начального распределение. Действительно, из (9) и (7) следует, что

План
Содержание

Введение

§ 1. Цепь Маркова

§ 2. Однородная цепь Маркова. Переходные вероятности. Матрица перехода

§3. Равенство Маркова

§4. Стационарное распределение. Теорема о предельных вероятностях

§5. Доказательство теоремы о предельных вероятностях в цепи Маркова

§6. Области применения цепей Маркова

Заключение

Список использованной литературы

Введение
Тема нашей курсовой работы цепи Маркова. Цепи Маркова названы так в честь выдающегося русского математика, Андрея Андреевича Маркова, который много занимался случайными процессами и внес большой вклад в развитие этой области. В последнее время можно услышать о применении цепей Маркова в самых разных областях: современных веб-технологиях, при анализе литературных текстов или даже при разработке тактики игры футбольной команды. У тех, кто не знает что такое цепи Маркова, может возникнуть ощущение, что это что-то очень сложное и почти недоступное для понимания.

Нет, все как раз наоборот. Цепь Маркова это один из самых простых случаев последовательности случайных событий. Но, несмотря на свою простоту, она часто может быть полезной даже при описании довольно сложных явлений. Цепью Маркова называют такую последовательность случайных событий, в которой вероятность каждого события зависит только от предыдущего, но не зависит от более ранних событий.

Прежде чем углубиться, нужно рассмотреть несколько вспомогательных вопросов, которые общеизвестны, но совершенно необходимы для дальнейшего изложения.

Задача моей курсовой работы - более подробно изучить приложения цепей Маркова, постановку задачи и проблемы Маркова.
Заказать написание новой работы



Дисциплины научных работ



Хотите, перезвоним вам?