Типичные примеры рефлексивных бинарных отношений. Понятие множества и его элементов. Операции над множествами: объединение, пересечение и разность. Декартово произведение множеств. Отношения функциональные, эквивалентности, порядка. Отношения степени n.
Аннотация к работе
Рефлексивность: 2. Слабая рефлексивность: 3. Антирефлексивность: 5. Транзитивность: Рефлексивность, свойство бинарных (двуместных, двучленных) отношений , выражающее выполнимость их для пар объектов с совпадающими членами (так сказать, между объектом и его "зеркальным отражением"): отношение R называется рефлексивным, если для любого объекта х из области его определения выполняется XRX. Интуитивные представления о "равенстве" (эквивалентности, подобии и т.п.), очевидным образом наделяющие его свойствами симметричности и транзитивности , "вынуждают" и свойство Р., поскольку последнее свойство следует из первых двух.Если элемент принадлежит множеству , то это обозначается: Если каждый элемент множества является также и элементом множества , то говорят, что множество является подмножеством множества : Подмножество множества называется собственным подмножеством, если Используя понятие множества можно построить более сложные и содержательные объекты. За исключением крайнего случая, когда отношение есть само декартово произведение , отношение включает в себя не все возможные кортежи из декартового произведения. Это значит, что для каждого отношения имеется критерий, позволяющий определить, какие кортежи входят в отношение, а какие - нет. Действительно, каждому отношению можно поставить в соответствие некоторое логическое выражение , зависящее от n параметров (n-местный предикат) и определяющее, будет ли кортеж принадлежать отношению . Более точно, кортеж принадлежит отношению тогда и только тогда, когда предикат этого отношения принимает значение "истина".Множество - это неопределяемое понятие, представляющее некоторую совокупность данных. Элементы множества можно отличать друг от друга, а также определять, принадлежит ли данный элемент данному множеству. Над множествами можно выполнять операции объединения, пересечения, разности и дополнения. Декартово произведение нескольких множеств - это множество кортежей, построенный из элементов этих множеств. Каждое отношение имеет предикат отношения и каждый n-местный предикат задает n-арное отношение.
Введение
. Рефлексивность:
2. Слабая рефлексивность:
3. Сильная рефлексивность:
4. Антирефлексивность:
5. Слабая антирефлексивность:
6. Сильная антирефлексивность:
7. Симметричность:
8. Антисимметричность:
9. Асимметричность:
10. Сильная линейность:
11. Слабая линейность:
12. Транзитивность:
Рефлексивность, свойство бинарных (двуместных, двучленных) отношений , выражающее выполнимость их для пар объектов с совпадающими членами (так сказать, между объектом и его "зеркальным отражением"): отношение R называется рефлексивным, если для любого объекта х из области его определения выполняется XRX. Типичные и наиболее важные примеры рефлексивных отношений: отношения типа равенства (тождества , эквивалентности , подобия и т.п.: любой предмет равен самому себе) и отношения нестрогого порядка (любой предмет не меньше и не больше самого себя). Интуитивные представления о "равенстве" (эквивалентности, подобии и т.п.), очевидным образом наделяющие его свойствами симметричности и транзитивности , "вынуждают" и свойство Р., поскольку последнее свойство следует из первых двух. Поэтому многие употребительные в математике отношения, по определению Р. не обладающие, оказывается естественным доопределить таким образом, чтобы они становились рефлексивными, например, считать, что каждая прямая или плоскость параллельна самой себе, и т.п.
Вывод
Множество - это неопределяемое понятие, представляющее некоторую совокупность данных. Элементы множества можно отличать друг от друга, а также определять, принадлежит ли данный элемент данному множеству. Над множествами можно выполнять операции объединения, пересечения, разности и дополнения.
Новые множества можно строить при помощи понятия декартового произведения (конечно, есть и другие способы, но они нас в данный момент не интересуют). Декартово произведение нескольких множеств - это множество кортежей, построенный из элементов этих множеств.
Отношение - это подмножество декартового произведения множеств. Отношения состоят из однотипных кортежей. Каждое отношение имеет предикат отношения и каждый n-местный предикат задает n-арное отношение.
Отношение является математическим аналогом понятия "таблица".
Отношения обладают степенью и мощностью. Степень отношения - это количество элементов в каждом кортеже отношения (аналог количества столбцов в таблице). Мощность отношения - это мощность множества кортежей отношения (аналог количества строк в таблице).
В математике чаще всего используют бинарные отношения (отношения степени 2). В теории баз данных основными являются отношения степени . В математике, как правило, отношения заданы на бесконечных множествах и имеют бесконечную мощность. В базах данных напротив, мощности отношений конечны (число хранимых строк в таблицах всегда конечно).