Расчет теплопотерь через наружные ограждения, теплопоступлений в помещение свинарника, содержащего 300 свиней, влаговыдлений и газовыделений в данном помещении. Расходы вентиляционного воздуха в различные периоды года, выбор калориферов и вентиляторов.
Аннотация к работе
Для поддержания микроклимата на животноводческих фермах и комплексах принимают ОВС, посредством которых подают подогретый воздух в верхнюю зону помещения, предусматривая дополнительную подачу наружного воздуха в теплый период года через вентбашни. Удаляют воздух из помещения либо при помощи вентбашень, либо через окна и вытяжные шахты. В холодный и переходной периоды воздух удаляют из помещения через вентбашни при неработающих осевых вентиляторах. В теплый период требуемое количество воздуха подают вентбашнями, при этом удаляют воздух из помещения через фрамуги окон и из навозных каналов. Определим тепловой поток полных тепловыделений, : , где - тепловой поток полных тепловыделений одним животным (таблица 3), .
Введение
Теплоснабжение является составной частью инженерного обеспечения сельского хозяйства. Повышение продуктивности в животноводстве и растениеводстве, укрепление кормовой базы, повышение сохранности сельскохозяйственной продукции, улучшение условий жизни сельского населения неразрывно связано с теплоснабжением. 8% от всех работающих в сельскохозяйственной отрасли заняты в теплоснабжении.
Специализация производства в животноводстве повышает требования к микроклимату. Содержание животных в холодных и плохо вентилируемых помещениях приводит к снижению продуктивности на 15-40%, расход кормов увеличивается на 10-30%, заболевания молодняка увеличиваются в 2-3 раза. Продуктивность в животноводстве по 1/3 определяется условиями содержания.
Большую роль играет поддержание микроклимата в современных коровниках. Он способствует максимальной продуктивности, наилучшей сохранности и интенсивному росту молодняка.
Для поддержания микроклимата на животноводческих фермах и комплексах принимают ОВС, посредством которых подают подогретый воздух в верхнюю зону помещения, предусматривая дополнительную подачу наружного воздуха в теплый период года через вентбашни. Удаляют воздух из помещения либо при помощи вентбашень, либо через окна и вытяжные шахты. В холодный и переходной периоды воздух удаляют из помещения через вентбашни при неработающих осевых вентиляторах. В теплый период требуемое количество воздуха подают вентбашнями, при этом удаляют воздух из помещения через фрамуги окон и из навозных каналов.
1. Составление исходных данных
По литературе [2] из таблицы 1.1. выписываем данные соответствующие своему варианту в таблицу 1.
Таблица 1. Расчетные параметры наружного воздуха
Область Температура наиболее холодных суток t, 0C Холодный период (параметры Б) Теплый период (параметры А)
, , , , Брестская -25 -21 -19,9 22,4 49
Для переходного периода принимаем температуру наружного воздуха и энтальпию .
По литературе [2] из таблицы 10.2 выписываем параметры внутреннего воздуха в таблицу 2.
Таблица 2. Расчетные параметры внутреннего воздуха
Помещение Период года Параметры воздуха ПДК , , , %
Помещение для содержания животных Холодный 20 70 2
Переходный 20 40-75 2 теплый 27,4 40-75 2
Здесь - расчетная температура внутреннего воздуха, ;
- относительная влажность, %;
- ПДК углекислого газа в зоне содержания поросят (удельная допустимая концентрация углекислого газа), , принимаем из таблицы 10.4 [2].
Таблица 3. Выделение теплоты, влаги и углекислого газа свиньями
Группа животных Живая масса Тепловой поток тепловыделений, Влаговыделения, Выделения , Полных явных
Свиноматки 200 376 271 155 48,5
Таблица 4. Температурные коэффициенты для свиней
Периоды года Температура , Температурные коэффициенты
Для расчета термических сопротивлений теплопередаче для стен, перекрытий и дверей необходимо знать технические характеристики строительных материалов и конструкций. Из таблицы 1.12 [2] выписываем необходимые данные в таблицу 5.
Таблица 5. Теплотехнические характеристики строительных материалов и конструкций
Наименование материала , Расчетные коэффициенты при условиях эксплуатации
Теплопроводности, БТЕПЛОУСВОЕНИЯ, Б
Кладка из силикатного кирпича 1800 0,87 10,9
Внутренняя штукатурка 1600 0,81 9,76
Рубероид 600 0,17 3,53
Цементная стяжка 1800 0,93 11,09
Керамзитобетон 1800 0,92 12,33
Двери и ворота деревянные из сосновых досок 500 0,18 4,54
Минераловатные плиты 350 0,11 1,72
2. Расчет теплопотерь через ограждающие конструкции
2.1 Расчет термического сопротивления теплопередаче
Термическое сопротивление теплопередаче, , для стен, покрытий, перекрытий, дверей и ворот: , где - коэффициент теплоотдачи на внутренней поверхности ограничивающей конструкции, ;
- термическое сопротивление теплопроводности отдельных слоев, ;
- термическое сопротивление замкнутой воздушной прослойки, ;
- коэффициент теплоотдачи на наружной поверхности ограничивающей поверхности, .
Проводим расчет для наружных стен.
Рассчитываем заполнение помещения животными, : , где - масса одной животного, (m = 200)
- количество животных (n = 300);
- площадь помещения, (A = 2655 ).
;
Так как, заполнение животными помещения и принимаем для стен и потолков .
Термическое сопротивление отдельных слоев, : , где - толщина слоя, ;
- теплопроводность материала слоя, ;
Кладка из силикатного кирпича
;
Внутренняя штукатурка: .
.
.
Проводим расчет для покрытий и перекрытий.
;
рубероид: ;
минераловатные плиты: ;
воздушная прослойка 50 мм: ;
доски сосновые: ;
.
.
Проводим расчет для наружных дверей и ворот.
;. сосновые доски: .
.
Проводим расчет для остекления.
Термическое сопротивление теплопередаче заполнения световых проемов принимаем равным нормированным значениям (стр. 32 [2]). Принимаем двойное остекление в металлических переплетах
.
Проводим расчет для различных зон пола.
Сопротивление теплопередаче полов: , где - сопротивление теплопередаче рассматриваемой зоны неутепленного пола, ;
- толщина утепляющего слоя, ;
- теплопроводность утепляющего слоя, .
Сопротивление теплопередаче (стр. 39 [2]) принимаем: для I зоны: для II зоны: для III зоны: для IV зоны: ;
;
;
.
2.2 Определение требуемого термического сопротивления теплопередаче
Рассчитываем требуемые по санитарно-гигиеническим требованиям термические сопротивления теплопередаче для наружных стен, покрытий и перекрытий, наружных дверей и ворот.
Требуемое сопротивление теплопередаче, , наружных стен, покрытий и перекрытий: , где - расчетная температура внутреннего воздуха, ;
- расчетная температура наружного воздуха в холодный период года, ;
- нормативный температурный перепад между внутренним воздухом и внутренней поверхностью ограничивающей конструкции, ;
- коэффициент, учитывающий положение наружной поверхности по отношению к наружному воздуху.
В качестве расчетной температуры наружного воздуха принимают в зависимости от тепловой инерции наружного ограждения (стр. 33 [2]): при - абсолютно минимальную температуру;
при - среднюю температуру наиболее холодных суток;
при - среднюю температуру наиболее холодных трех суток;
при - среднюю температуру наиболее холодной пятидневки.
Тепловая инерция ограничивающей конструкции: , где - расчетный коэффициент теплоусвоения материала отдельных слоев ограждающей конструкции (таблица 5), .
Проведем расчет для наружных стен
.
Исходя из полученного выражения в качестве расчетной температуры наружного воздуха, принимаем среднюю температуру наиболее холодных суток.
Нормативный температурный перепад принимаем исходя из типа помещения (производственное помещение с влажным режимом, таблица 3.6 [2]): .
Температуру точки росы принимаем из приложения [1] при и - .
Коэффициент определяем по его нормированным значениям: .
.
Проводим расчет для покрытий и перекрытий.
В качестве расчетной температуры наружного воздуха принимаем среднюю температуру наиболее холодных суток: .
Коэффициент определяем по его нормированным значениям: .
.
Проводим расчет для световых проемов.
Принимаем сопротивление теплопередаче окон для производственных и вспомогательных промышленных предприятий с влажным или мокрым режимом (таблица 3.7 [2]): .
Проводим расчет для наружных дверей и ворот.
Нормативный температурный перепад: .
.
.
2.3 Сравнение действительных термических сопротивлений с требуемыми
Исходя из того, что требуемое термическое сопротивление должно быть меньше расчетного термического сопротивления, проверяем соблюдение санитарно-гигиенических норм: для наружных стен: ;
;
- не удовлетворяет. для покрытий и перекрытий: ;
;
- не удовлетворяет. для наружных дверей и ворот: ;
;
- удовлетворяет. для световых проемов: ;
;
- удовлетворяет.
В целом делаем вывод о том, что расчетные термические сопротивления ограждающих конструкций меньше требуемых, кроме световых проемов и дверей (т.е. не удовлетворяют санитарно гигиеническим нормам). Все нуждается в дополнительном утеплении.
2.4 Расчет площадей отдельных зон пола
168
172
176
180
Рис. 1. Зоны пола рассчитываемого помещения.
;
;
;
;
2.5 Расчет теплопотерь через ограждающие конструкции.
,
где - площадь ограждающей конструкции, ;
- термическое сопротивление теплопередаче, ;
- расчетная температура внутреннего воздуха, ;
- расчетная температура наружного воздуха, ;
- добавочные потери теплоты в долях от основных теплопотерь;
- коэффициент учета положения наружной поверхности по отношению к наружному воздуху.
Н.с. - наружные стены;
Д.о. - двойное остекление;
Пт. - перекрытия;
Пл1, Пл2, Пл3, Пл4. - пол.
Площадь окна: ;
площадь окон: ;
Тепловой поток теплопотерь для окон, обращенных на северо-запад: ;
Тепловой поток теплопотерь для стен, обращенных на северо-восток: ;
на северо-запад: ;
на юго-запад: ;
Тепловой поток теплопотерь для различных зон пола: ;
Расход вентиляционного воздуха, , в теплый период года из условия удаления выделяющихся: водяных паров: .
Влагосодержание наружного воздуха определим по - диаграмме (рис. 1.1 [2]) при параметрах и .
.
Влагосодержание внутреннего воздуха: .
. расход вентиляционного воздуха исходя из нормы минимального воздухообмена: , где - норма минимального воздухообмена на 1ц живой массы, ;
- живая масса животного, .
.
.
В качестве расчетного значения расхода воздуха в теплый период принимаем наибольший, т.е. .
Результаты расчетов сводим в таблицу 7
Таблица 7 Результаты расчета тепловоздушного режима и воздухообмена
Наименование помещения Периоды года Наружный воздух Внутренний воздух Влаговыделения, кг/ч от животныхот обор. и с полаитого
Свинарник-маточник на 300 мест Холодный -21 70 20 70 69,75 6,98 76,73
Переходный 8 70 20 70 69,75 6,98 76,73
Теплый 22,4 70 27,4 70 104,63 26,16 130, 79
Теплопоступления, КВТ Теплопотери через ограждения, КВТ Избыточная теплота, КВТ Угловой коэффициент, КДЖ/кг Расход вентил. воздуха Температура приточн. воздуха
От животных От оборудования От солнечной радиации Итого
На свиноводческих фермах применяют вентиляционные системы, посредствам которых подают подогретый воздух в верхнюю зону помещения по воздуховодам равномерной раздачи. Кроме того, предусматривают дополнительную подачу наружного воздуха в теплый период года через вентбашни.
Тепловая мощность отопительно-вентиляционной системы, : , где - тепловой поток теплопотерь через ограждающие конструкции, ;
- тепловой поток на нагревание вентиляционного воздуха, ;
- тепловой поток на испарение влаги внутри помещения, ;
- тепловой поток явных тепловыделений одним животным, ;
- число голов.
;
Подача воздуха одной ОВС: ;
Определим температуру подогретого воздуха, : , где - наружная температура в зимний период года, ;
.
5. Расчет и выбор калориферов
В системе вентиляции и отопления устанавливаем водяной калорифер. Теплоноситель - пар низкого давления.
Предусматриваем две отопительно-вентиляционные системы, поэтому:
Рассчитаем требуемую площадь живого сечения, , для прохода воздуха: , где - массовая скорость воздуха, , (принимается в пределах 4-10
).
Принимаем массовую скорость в живом сечении калорифера: .
.
Принимаем один калорифер ( ), ( ).
По таблице 8.10 [2] по рассчитанному живому сечению выбираем калорифер марки КВСБ со следующими техническими данными:
Таблица 8. Технические данные калорифера КВСБ.
Номер калорифера Площадь поверхности нагрева , Площадь живого сечения по воздуху , Площадь живого сечения по теплоносителю , 10 28,11 0,581 0,00261
Уточняем массовую скорость воздуха: .
Определяем коэффициент теплопередачи, : , где - коэффициент, зависящий от конструкции калорифера;
- массовая скорость в живом сечении калорифера, ;
и - показатели степени.
Из таблицы 8.12 [2] выписываем необходимые данные для КВСБ: ; ; ; ; .
.
Определяем среднюю температуру воздуха, : .
Среднюю температуру воды принимаем равной температуре насыщения (табл 1.8. [2])
Определяем требуемую площадь поверхности теплообмена калориферной установки, :
.
Определяем число калориферов: , где - общая площадь поверхности теплообмена, ;
- площадь поверхности теплообмена одного калорифера, .
.
Округляем до большего целого значения, т.е. .
Определяем процент запаса по площади поверхности нагрева: .
- удовлетворяет.
Аэродинамическое сопротивление калориферов, : , где - коэффициент, зависящий от конструкции калорифера;
- показатель степени.
.
Аэродинамическое сопротивление калориферной установки, : ,
где - число рядов калориферов;
- сопротивление одного ряда калориферов, .
.
6. Аэродинамический расчет воздуховодов
В с/х производственных помещениях используют перфорированные пленочные воздухораспределители. Предусматривают расположение двух несущих тросов внутри пленочной оболочки, что придает воздуховодам овальную форму при неработающем вентиляторе и тем самым предотвращает слипание пленки.
Задача аэродинамического расчета системы воздуховодов состоит в определении размеров поперечного сечения и потерь давления на отдельных участках системы воздуховодов, а также потери давления во всей системе воздуховодов.
Исходными данными к расчету являются: расход воздуха , длина воздухораспределителя , температура воздуха и абсолютная шероховатость мм (для пленочных воздуховодов).
В соответствии с принятыми конструктивными решениями составляют расчетную аксонометрическую схему воздуховодов с указанием вентиляционного оборудования и запорных устройств.
Схему делят на отдельные участки, границами которых являются тройники и крестовины. На каждом участке наносят выносную линию, над которой проставляют расчетный расход воздуха ( ), а под линией - длину участка (м). В кружке у линии указывают номер участка.
Выбираем основные магистральные расчетные направления, которые характеризуются наибольшей протяженностью.
Расчет начинаем с первого участка.
Используем перфорированные пленочные воздухораспределители. Выбираем форму поперечного сечения - круглая.
Задаемся скоростью в начальном поперечном сечении: .
Принимаем ближайший диаметр, исходя из того, что полученный равен (стр. 193 [2]).
Динамическое давление, : , где - плотность воздуха.
.
Определяем число Рейнольдса: , где - кинематическая вязкость воздуха, , (табл. 1.6 [2]).
.
Коэффициент гидравлического трения: , где - абсолютная шероховатость, , для пленочных воздуховодов принимаем .
.
Рассчитаем коэффициент, характеризующий конструктивные особенности воздухораспределителя: , где - длина воздухораспределителя, .
.
Полученное значение коэффициента меньше 0,73, что обеспечивает увеличение статического давления воздуха по мере приближения от начала к концу воздухораспределителя.
Установим минимальную допустимую скорость истечения воздуха через отверстие в конце воздухораспределителя, : , где - коэффициент расхода (принимают 0,65 для отверстий с острыми кромками).
.
Коэффициент, характеризующий отношение скоростей воздуха: , где - скорость истечения через отверстия в конце воздухораспределителя, (рекомендуется ), принимаем .
.
Установим расчетную площадь отверстий, , в конце воздухораспределителя, выполненных на 1 длины: .
По таблице 8.8 [2] принимаем один участок.
Определим площадь отверстий, , выполненных на единицу воздуховода: , где - относительная площадь воздуховыпускных отверстий на участке воздухораспределителя ( по [1]).
.
Диаметр воздуховыпускного отверстия принимают от 20 до 80 , примем .
Определим число рядов отверстий: , где - число отверстий в одном ряду ( );
- площадь воздуховыпускного отверстия, .
Определим площадь воздуховыпускного отверстия, :
. .
Шаг между рядами отверстий, : .
Определим статическое давление воздуха, : в конце воздухораспределителя: ;
в начале воздухораспределителя: .
Потери давления в воздухораспределителе, : .
Дальнейший расчет сводим в таблицу. Причем: , , , где R - удельные потери давления на единице длины воздуховода, определяется по монограмме (рис. 8.6 [2])
- коэффициент местного сопротивления скорость воздуха в жалюзийной решетке
Расчет вытяжных шахт естественной вентиляции производят на основании расчетного расхода воздуха в холодный период года. Работа вытяжных шахт будет более эффективной при устойчивой разности температур внутреннего и наружного воздуха (не менее 5°С), что наблюдается в холодный период года.
Скорость воздуха в поперечном сечении вытяжной шахты, : , где - высота вытяжной шахты между плоскостью вытяжного отверстия и устьем шахты (3-5), (принимаем );
- диаметр, (принимаем );
- расчетная наружная температура, ( );
- сумма коэффициентов местных сопротивлений.
Местное сопротивление определяем по таблице 8.7 [2]: для входа в вытяжную шахту: ;
для выхода из вытяжной шахты: .
.
.
Определяем число шахт:
, где - расчетный расход воздуха в зимний период, ;
- расчетный расход воздуха через одну шахту, .
Определяем расчетный расход воздуха через одну шахту, : , где - площадь поперечного сечения шахты, .
Рассчитаем площадь поперечного сечения шахты, : .
.
.
Принимаем число шахт для всего помещения .
8. Выбор вентилятора
Подбор вентилятора производят по заданным значениям подачи и требуемого полного давления.
В системах вентиляции и воздушного отопления с/х производственных зданий устанавливают радиальные (центробежные) вентиляторы марок В.Ц 4-75, В.Ц 4-76 и В.Ц 4-46, осевые вентиляторы марок В-06-300 и ВО.
Радиальные вентиляторы изготавливают по схемам конструктивного исполнения 1 и 6. Вентиляторы исполнения 1 более компактны и удобны при эксплуатации, с меньшим уровнем шума.
Подачу вентилятора определяем с учетом потерь или подсосов воздуха в воздуховоды, вводя поправочный коэффициент к расчетному расходу воздуха для стальных воздуховодов 1,1, : .
Определяем требуемое полное давление вентилятора, : , где - температура подогретого воздуха, =1 - при нормальном атмосферном давлении.
.
По подаче воздуха вентилятора и требуемому полному давлению, согласно графику характеристик вентиляторов ВЦ 4-75 (рис. 8.16 [2]), выбираем вентилятор марки: Е 8.105-1.
В соответствии с выбранным ранее калорифером и выбранным теперь вентилятором заполняем таблицу характеристик отопительно-вентиляционной системы: Таблица 10. Характеристика отопительно-вентиляционной системы
Обозначение Кол. Систем Наим-е помещения Тип установки Вентилятор тип номер исполнение положение , , , 1 Свинарник-маточник Е 8.105-1. ВЦ 4-75 8 1 Л 18000 318,67 700
9. Энергосбережение
Наиболее эффективным техническим решением вопроса сокращения расхода тепловой энергии на обеспечение микроклимата, безусловно является использование типа воздуха, удаляемого из животноводческих и птицеводческих помещений. Расчет технико-экономических показателей микроклимата показывает, что применение в системах утилизаторов тепла позволяет сократить расход тепловой энергии на данный технологический процесс более чем в 2 раза. Однако такие системы более металлоемкие и требуют дополнительных эксплуатационных затрат электрической энергии на вентиляторы. Использование тепловой энергии в системах вентиляции в основном обеспечивается за счет применения регенеративных и рекуперативных теплообменных аппаратов различной модификации.
Список литературы
Отопление и вентиляция животноводческих зданий. Методические указания к курсовому и дипломному проектированию. - Мн. Ротапринт БАТУ. 1994 г.
2. Справочник по теплоснабжению сельского хозяйства/Л.С. Герасимович, А.Г. Цубанов, Б.Х. Драганов, А.Л. Синяков. - Мн.: Ураджай, 1993. - 368 с.