Сварочные работы - Курсовая работа

бесплатно 0
4.5 31
Способы сварки, виды. Подготовка кромок, сборка деталей под сварку. Выбор и характеристика свариваемой стали. Возможные дефекты сварных швов, способы их устранения. Контроль качества сварных соединений и швов, способы контроля. Организация рабочего места.


Аннотация к работе
Условно развитие сварки можно разделить на ряд этапов: с 1948г. получили промышленное применение способы дуговой сварки в инертных защитных газах: ручная неплавящимся электродом, механизированная и автоматическая плавящимся и неплавящимися электродом. в 1950-1952г. была разработана сварка низкоуглеродистых и низколегированных сталей в среде углекислого газа. При сварке в защитных газах для защиты зоны дуги и расплавленного металла используют газ, подаваемый струей с помощью горелки. В качестве защитных газов используют инертные газы (аргон, гелий и их смеси), не взаимодействующие с металлом при сварке, и активные газы (углекислый газ, водород и др.), взаимодействующие с металлом, а также их смеси. При сварке плавящимся электродом дуга горит между электродной проволокой, непрерывно подаваемой в дугу, и изделием. Аргон марки А рекомендуют использовать при сварке активных и едких металлов и их сплавов (Ti, Zr, Nb); марки Б - для сварки сплавов на основе магния, алюминия; марки В - для сварки коррозионно-стойких, жаропрочных и окалиностойких сталей.Сварка таких сталей выполняется без предварительного и сопутствующего подогрева, без последующей термической обработки, обычно они не дают трещин при сварке. Сварка таких сталей производится по специальной технологии с предварительной термообработкой и тепловой обработкой после сварки. Их сварка выполняется с предварительной термообработкой, подогревом в процессе сварки и термообработкой после сварки. Подготовка кромок металла под сварку делается с целью обеспечения полного провара металла по всей его толщине и получения: доброкачественного сварного соединения. 14 Сварка стыковочных швов.

Введение
Электрическая дуга впервые была открыта в 1802 г. Профессором физики Санкт-Петербургской медико-хирургической академии В. В. Петровым. Описывая явления электрической дуги в книге под названием «Известия о гальвани-вольтовских опытах», профессор В.В. Петров указал на возможность использования электрической дуги для электроосвещения и плавления металлов.

А в 1882 г. Русский изобретатель Н. Н. Бенардос применил электрическую дугу для соединения металлов, в 1885 г. Он получил патент под названием «Способ соединения и разъединения металлов непосредственным действием электрического тока», используя для этого дугу, горящую между угольным электродом и металлом и питаемую электрической энергией от аккумуляторной батареи. Русский инженер-металлург и изобретатель Н. Г. Славянов в 1888 г. Разработал способ сварки металлическим электродом, в 1891 г. Он получил два патента под названием «Способ и аппараты для электрической отливки металлов» и «Способ электрического уплотнения металлических отливок». Н. Н. Бенардос предложил различные способы сварки наклонными металлическими электродами и устройства, в которых подача электрода в зону дуги выполнялась за счет давления пружины. Он также разработал разнообразные виды автоматических устройств для сварки угольным и металлическим электродами, являющимися прообразами современных сварочных автоматов и полуавтоматов. Оригинальное приспособление для автоматического регулирования длины дуги с помощью соленоида, предложенное Н. Н. Бенардосом, в 1900 г. Экспонировалось на Парижской всемирной выставке. Однако низкий уровень развития техники в России тех лет не позволял использовать и широко развивать столь гениальные идеи В. В. Петрова, Н. Н. Бенардоса и Н. Г. Славянова.

В 20-х годах нашего столетия дуговую сварку начинают внедрять при ремонте локомобилей и котлов. Например, дуговая сварка в это время применялась в Московских, Ленинградских, Ярославских, Читинских и других железнодорожных мастерских при использовании импортного и собственного сварочного оборудования, однако собственное оборудование было кустарного изготовления, а присадочным материалом служили голые электроды с ионизирующим покрытием.

В годы первых пятилеток разработка сварочного оборудования и передовой по тому времени технологии сварки способствовали успешному строительству гигантских строек: Днепрогэса, Магнитки, Уралмашзавода и других важнейших объектов страны. Развитие сварки позволило в годы Великой Отечественной войны быстро организовать производство самолетов, танков, орудий и других видов вооружения на заводах Урала и Сибири.

В настоящее время сварочное производство является самостоятельной отраслью машиностроительной промышленности и для его дальнейшего развития требуется решение целого ряда вопросов, таких, как разработка новых сварочных машин, аппаратов и материалов.

Сваркой называют процесс получения неразъемных соединений по средствам установления межатомных связей между свариваемыми частями при их нагревании или пластическом деформировании или совместном действии того и другого. В 1802г. российский ученый В. В. Петров открыл явление электрического дугового разряда и указал на возможность использования его для расплавления металлов. Своим открытием В. В. Петров заложил начало развития новых отраслей технических знаний и наук, получивших в дальнейшем практическое применение в электродуговом освещении, а затем и при электрическом нагреве, плавке и сварке металлов. В 1882г другой российский ученый Н.Н.Бенардос, работая над созданием крупных аккумуляторных батарей, открыл способ электродуговой сварки металлов неплавящимся угольным электродом. Им был разработан способ дуговой сварки в защитном газе и дуговая резка металлов. В 1888г. российский инженер Н. Г. Славянов предложил производить сварку плавящимся металлическим электродом. С именем Н. Г. Славянова связано развитие металлургических основ электрической дуговой сварки, создание первого автоматического регулятора длины дуги, и первого сварочного генератора. Им были предложены флюсы для получения высококачественного металла для сварных швов.

Условно развитие сварки можно разделить на ряд этапов: с 1948г. получили промышленное применение способы дуговой сварки в инертных защитных газах: ручная неплавящимся электродом, механизированная и автоматическая плавящимся и неплавящимися электродом. в 1950-1952г. была разработана сварка низкоуглеродистых и низколегированных сталей в среде углекислого газа. В конце пятидесятых годов французским ученым был разработан новый вид электрической сварки плавлением, получившей название электроннолучевой сварки. Впервые в открытом космосе была осуществлена автоматическая сварка и резка в 1969г. Продолжая эти работа в 1984г. космонавты С. Савицкая и В. Джанибеков провели в открытом космосе ручную сварку, резку и пайку различных металлов. Сегодня свариваются материалы, которые еще относительно недавно считались экзотическими. Это титановые ниобиевые и берилловые сплавы молибден, вольфрам, керамика, а также все возможные сочетания разнородных металлов. В сварочное производство активно внедряются роботы, что позволяет полностью автоматизировать цикл сварки деталей без участия рабочего сварщика. В последние годы патентные ведомства промышленно развитых стран мира ежемесячно регистрируют около двухсот изобретений в области сварной техники и технологии. Отсюда следует необходимость постоянного совершенствования обучения профессионального мастерства рабочих-сварщиков.

1. Сварка алюминия в защитных газах

Для получения высококачественных соединений при дуговой сварке необходима защита зоны дуги и расплавленного металла от вредного воздействия воздуха. При сварке в защитных газах для защиты зоны дуги и расплавленного металла используют газ, подаваемый струей с помощью горелки.

В качестве защитных газов используют инертные газы (аргон, гелий и их смеси), не взаимодействующие с металлом при сварке, и активные газы (углекислый газ, водород и др.), взаимодействующие с металлом, а также их смеси.

При сварке в защитных газах неплавящимся электродом, дуга горит между неплавящимся электродом и изделием. Электрод в процессе сварки не расплавляется и не попадает на шов. Дуга, передвигаемая вдоль свариваемых кромок, оплавляет их. По мере удаления дуги расплавленный металл затвердевает, образуя шов, соединяющий кромки изделия.

При сварке плавящимся электродом дуга горит между электродной проволокой, непрерывно подаваемой в дугу, и изделием. Дуга расплавляет проволоку и кромки изделия, и образуется общая сварочная ванна. По мереперемещения дуги сварочная ванна затвердевает, образуя шов, соединяющий кромки изделия.

Основными параметрами ручной аргонодуговой сварки являются ток дуги и расход защитного газа.

Особенности дуговой сварки в защитных газах следующие: высокая концентрация энергии дуги, обеспечивающая минимальную зону термического влияния и небольшие деформации изделия; высокая производительность; эффективная защита расплавленного металла, особенно при использовании в качестве защитной среды инертных газов; отсутствие необходимости применения флюсов или обмазок; возможность сварки в различных пространственных положениях.

При сварке в защитных газах в качестве источника энергии, обеспечивающего плавление присадочного и основного металлов, используется электрическая дуга. Дуга отличается от других видов разрядов в газах низким катодным падением потенциала, а следовательно, - низким общим напряжением дуги и высокой плотностью тока. Электрическая дуга по длине имеет три области, различающиеся физическими явлениями, протекающими в них.

Участки, непосредственно примыкающие к электродам, называют катодной (у отрицательного электрода) и анодной (у положительного электрода) областями, а участок между ними - столбом дуги. Те части электродов, на которые >дуга и через которые проходит основной ток дуги, называют активными пятнами, причем на положительном электроде - анодное пятно, а на отрицательном - катодное. Температура дуги при сварке плавящимся электродом сравнительно невелика: 5000…6500 гр.ц. В дугах с неплавящимся электродами температура значительно выше.

С увеличением давления повышается напряженность поля в столбе, а размеры дуги уменьшаются. Таким образом, изменяя давление, при котором горит дуга, можно значительно изменять электрические и энергетические характеристики дуги. Сварочная дуга в защитных газах характеризуется сильным излучением.

Процессы, протекающие в катодной области, играют основную роль в поддержании дугового разряда и получении стабильной дуги. В анодной области ток переносится отрицательно заряженными частицами - электронами, а при наличии в дуговом промежутке газов, обладающих электроотрицательным потенциалом, - также и отрицательными ионами.

Аргон - бесцветный, неядовитый газ, почти в 1,5 раза тяжелее воздуха. С большинством элементов аргон не образует химических соединений. В металлах аргон нерастворим в жидкостях, так и в твердом состоянии.

Промышленный аргон получают из воздуха в разделительных колонках путем избирательного испарения с последующим глубоким охлаждением фракционной перегонкой. Полученный таким образом аргон содержит некоторое количество кислорода. Дальнейшая очистка от кислорода производится беспламенным сжиганием водорода в аргоне или другим способом. В чистом аргоне все же остается небольшое количество кислорода, азота и влаги. Аргон марки А рекомендуют использовать при сварке активных и едких металлов и их сплавов (Ti, Zr, Nb); марки Б - для сварки сплавов на основе магния, алюминия; марки В - для сварки коррозионно-стойких, жаропрочных и окалиностойких сталей.

При сварке сталей в основном используют холоднотянутую стальную сварочную проволоку по ГОСТ 2246-70, который предусматривает изготовление проволоки семидесятипяти марок. В зависимости от уровня легирования сварочная проволока по ГОСТ 2246-70 подразделяется на низкоуглеродистую, легированную и высоколегированную.

Низкоуглеродистую проволоку изготовляют шести марок: Св-08, Св-08А,Св-08АА, Св-08ГА, Св-ЮГА, Св-10Г2. Легированную проволоку изготавливают тридцати марок: Св-08ГС, Св-12ГС, Св-18ХГС, Св-ЮНМА, Св-08МХ,Св-08ХМ, Св-18ХМА, Св-08ХНМ, Св-08ХМФА, Св-ЮХМФТ, Св-08ХГ2С, Св-08ХГСМА, Св-10ХГ2СМА, Св-08ХГСМФА, Св-04Х2МА, Св-13Х2МФТ, Св-08ХН2ГМТА (ЭП-111), Св-08ХН2ГМЮ, Св-08ХН2Г2СМЮ, Св-06Н3 и Св-10Х5М.

Высоколегированную проволоку изготовляют тридцати девяти марок: Св-12Х11НМФ, Св-ЮХПНВМФ, Св-12Х12, Св-20Х13, Св-06Х14, Св-08Х14ГНТ, Св-10Х17Т, Св-13Х25Т, Св-01Х19НЭ, Св-04Х19Н9, Св-08Х16Н8М2 (ЭП-377), Св-08Х18Н8Г2Б (ЭП-307), Св-07Х18Н9ТЮ, Св-06Х19Н9Т, Св-04Х19Н9С2, Св-08Х19Н9Ф2С2, Св-05Х19Н9Ф3С2, Св-07Х19Н10Б, Св-08Х19Н10Г2Б (ЭИ-898), Св-06Х19Н10М3Т, Св-08Х19Н10М3ТБ (ЭП-89), Св-10Х20Н15, Св-07Х25Н12Г2Т (ЭП-75), Св-08Х20Н9Г7Т, Св-08Х21Н10Г6, Св-30Х25Н16Г7, Св-10Х16Н25АМ6, Св-09Х16Н25М6АФ (ЭИ-981А), Св-01Х23Н28М3Д3Т (ЭП-516), Св-30Х15Н35В3Б3Т, Св-08Н50 и Св-06Х15Н60М15 (ЭП-367).

По виду поверхности низкоуглеродистую и легированную проволоку подразделяют на неомедленную и омедленную ( в условном обозначении есть буква О). Специальные требования к омедлению поверхности проволоки (включая суммарное содержание меди) устанавливаются техническими условиями.

По требованию потребителя проволока должна изготавливаться из стали, выплавленной электрошлаковым (Ш) или ваккумно-дуговым (ВД) переплавом либо в ваккумно-индукционных печах (ВИ). При этом дополнительные требования к металлу проволоки (ужесточение норм по содержанию вредных и посторонних примесей, введение ограничений по содержанию поверхности проволоки (включая суммарное содержание меди) устанавливаются техническими условиями.

При сварке плавлением алюминия и его сплавов в основном используют тянутую и прессованную сварочную проволоку из алюминия и алюминиевых сплавов по ГОСТ 7871-75, который предусматривает изготовление проволоки четырнадцати марок. Овальность проволоки не должна превышать допустимых отклонений диаметра. Поверхность проволоки диаметром 4мм и менее подвергают химической обработке. После обработки проволока должна иметь блестящую поверхность с параметром шероховатости Ra менее 2,5 мкм по ГОСТ 2789-73.

Полуфабрикаты из алюминиевых сплавов (листы, профили, трубы) характеризуются малой плотностью, сравнительно высокой прочностью, хорошей обрабатываемостью и способностью легко деформироваться. Поэтому они нашли широкое применение в таких отраслях машиностроения, как авиастроение, судостроение, производство химической аппаратуры, строительство, транспортное машиностроение др. Благодаря высокой коррозионной стойкости, а также хорошей тепло- и электропроводимости большинство алюминиевых сплавов во многих случаях являются трудно заменимыми конструкционными материалами.

В сварных конструкциях получили распространение деформируемые алюминий (АД, АД1 и др.) и алюминиевые сплавы, не упрочняемые термообработкой (АМЦ, АМГ, АМГ3, АМГ63, АМГ6 и др.), а также упрочняемые термообработкой (Д20, М40, Д20, ВАД23, В92А,1201,1420 и др.). Литейные сплавы применяются в сварных конструкциях редко. С помощью сварки плавлением изделий из алюминиевых сплавов получаются различные виды сварных соединений - стыковые, нахлесточные, тавровые и угловые. Наибольшее распространение получили стыковые соединения. Нахлесточные, тавровые и угловые соединения желательно выполнять аргонодуговой сваркой.

Для сварки алюминиевых сплавов в защитных газах применяют аргон первого сорта или смеси аргона с гелием. При этом разрушение оксидной пленки происходит в результате катодного распыления, в связи с чем, сварку алюминиевых сплавов в аргоне желательно выполнять на постоянном токе обратной полярности. Это возможно при автоматической и полуавтоматической сварке плавящимся вольфрамовым электродом.

Разработан метод микроплазменной сварки на переменном токе, обеспечивающий нормальное катодное распыление и очистку ванны в полупериоды обратной полярности и достаточную стойкость вольфрамового электрода. Этот метод позволяет сваривать алюминиевые сплавы толщиной 0,2…2 мм при силе тока 10…100 А. В качестве плазмообразующего газа, при микроплазменной сварке используют аргон, а в качестве защитного газа - гелий. Гелий, защищая ванну от контакта с атмосферой, затрудняет развитие фронта ионизации в радиальном направлении, т. е. делает дугу пространственно устойчивой.

1.1 Сварка Полуавтоматом

Сварка плавящимся электродом алюминия в защитном газе может быть, как автоматической, так и полуавтоматической. В данном случае имеется в виду сварка с формирующей канавкой на подкладках. Сварка алюминия полуавтоматом примечательна тем, что возможна в разнообразных пространственных положениях. Причем данная технология сварки алюминия дает добро на замену менее совершенного процесса сварки сплавов этого металла покрытыми электродами. В процессе такой полуавтоматической сварки рекомендуется использование тянущей разновидности механизмов подачи. В настоящее время, сварка алюминия в защитной среде аргона является одним из самых распространенных видов сварки алюминия. Сварка алюминия в среде защитных газов не плавящимися электродами. При сварке алюминия и его сплавов в среде аргона, производящейся не плавящимися (вольфрамовыми) электродами, используется технология сварки алюминия аргоном со следующими параметрами. Применяется аргон либо высшего, либо первого сорта, а также может использоваться гелий высокой чистоты или его смесь с аргоном. Этот вид процесса используют при сварке не длинных швов, и выполнении не больших объемов сварочных работ. Технология сварки алюминия аргоном. Схема сварки алюминия полуавтоматом

Ручной способ сварки не плавящимися электродами в защитной среде аргона, осуществляется вольфрамовыми электродами. Наиболее часто применяются электроды, имеющие диаметр от 2 до 6 миллиметров. Диаметр используемого электрода, расход аргона, сила сварочного тока зависят от толщины свариваемого металла. Например, сварка алюминия аргоном металла толщиной от 4 до 6 миллиметров производится вольфрамовыми электродами диаметром 4 миллиметра и силе сварочного тока в 160 - 180 Ампер, при расходе аргона около 10 л/мин. Существуют таблицы, где приводятся подобные данные. При этом рекомендуется применять установки переменного тока типа УДГ-300, УДГ-500. Листы из алюминия и его сплавов толщиной до 3 миллиметров, при сварке на подкладке, свариваются за один проход. При толщине 4-6 миллиметров, не разделывая кромок, листы можно сварить за два прохода - по одному проходу на сторону. Если сваривается металл толщиной более 6 миллиметров, то необходима V-образная разделка стыка и по два прохода на каждую сторону. А для толщины 8-15 миллиметров уже нужна Х-образная разделка. При этом каждую сторону стыка, необходимо, пройти по два раза. Для увеличения производительности, используют трехфазную дугу. Так как, источник нагрева становится мощнее в три раза - это позволяет сваривать листы алюминия до 30 миллиметров толщиной, при сварке на прокладке. Нагрев металла происходит одной независимой дугой между электродами, и двумя зависимыми дугами между металлом и электродами. Сварка алюминия в среде защитных газов плавящимся электродом. В качестве плавящегося электрода применяется присадочная проволока из алюминия или его сплавов. При этом чаще всего, сварка алюминия аргоном проводится при помощи полуавтоматической или автоматической сварки. При длинных швах и больших объемах сварочных работ, когда требуется большая производительность, ничего не остается, как варить алюминий аргоном на полуавтоматических или автоматических установках. Диаметр используемой проволоки может быть от 1,5 до 2,5 миллиметров, сварка алюминия полуавтоматом проводится обратно полярным постоянным током. Кромки стыков при этом разделываются X-образным V-образным способом, угол раскрытия составляет от 70 до 90 градусов, для размещения наконечника горелки в разделке.

Производительность достигает сорока метров в час, при подаче проволоки со скоростью до 400 метров в час. Это позволяет сваривать металл толщиной 16 миллиметров за один проход, при сварке на прокладке, и за два прохода, сваривается металл толщиной до 30 миллиметров. При сварке алюминия в среде аргона цена одного сантиметра шва, в среднем по России, составляет от 100 до 300 рублей. Трудности, возникающие при сварке алюминия и его сплавов. Главной трудностью, является образование пленки из тугоплавкого оксида алюминия, который имеет температуру плавления 2050 °С и плотность большую, чем у алюминия. Это усложняет процесс сплавления, и при этом металл шва загрязняется частичками этой пленки. Оксидную пленку при сварке в среде аргона удаляют при помощи катодного распыления. Но оно возможно при сварке с обратной полярностью, а при сварке неплавящимися электродами в аргоновой среде изза неправильного теплового распределения межу изделием и электродом обратная полярность не применима. По причине этого, сварку проводят на переменном токе, при котором пленка разрушается в полупериоды обратной полярности.

1.2 Способы варки, виды

Сварка плавлением осуществляется при нагреве сильным концентрированным источником тепла (электрической дугой, плазмой и др.) кромок свариваемых деталей, в результате чего кромки в месте соединения расплавляются, самопроизвольно сливаются, образуя общую сварочную ванну, в которой происходят некоторые физические и химические процессы.

Сварка давлением осуществляется пластическим деформированием металла в месте соединения под действием сжимающих усилий. В результате различные загрязнения и окислы на свариваемых поверхностях вытесняются наружу, а чистые поверхности сближаются по всему сечению на расстояние атомного сцепления.

Основные виды сварки: v Ручная дуговая сварка осуществляется покрытыми металлическими электродами. К электроду и свариваемому металлу подводится переменный или постоянный ток, в результате чего возникает дуга, постоянную длину которой необходимо поддерживать на протяжении всего процесса сварки. v Дуговая сварка под флюсом. Сущность сварки состоит в том, что дуга горит под слоем сварочного флюса между концом голой электродной проволоки. При горении дуги и плавлении флюса создается газошлаковая оболочка, препятствующая отрицательному воздействию атмосферного воздуха на качество сварного соединения. v Дуговая сварка в защитном газе производится как неплавящимся (чаще вольфрамовым), так и плавящимся электродам. v При сварке неплавящимся электродом дуга горит между электродом и свариваемым металлом в защитном инертном газе. Сварочная проволока вводится в зону сварки со стороны. v Сварка плавящимся электродам выполняется на полуавтоматах и автоматах. Дуга в данном случае возникает между непрерывно подающейся голой проволокой и свариваемым металлом. v В качестве защитных газов применяют инертные (аргон, гелий, азот) и активные газы (углекислый газ, водород, кислород), а также смеси аргона с гелием, либо углекислым газом, либо кислородом; углекислого газа с кислородом и др. v Газовая сварка осуществляется путем нагрева до расплавления свариваемых кромок и сварочной проволоки высокотемпературным газокислородным пламенем от сварочной горелки. В качестве горючего газа применяется ацетилен и его заменители (пропан-бутан, природный газ, пары жидких горючих и др.) v Электрошлаковая сварка применяется для соединения изделий любой толщины в вертикальном положении. Листы устанавливают с зазором между свариваемыми кромками. В зону сварки подают проволоку и флюс. Дуга горит только в начале процесса. В дальнейшем после расплавления определенного количества флюса дуга гаснет, и ток проходит через расплавленный шлак. v Контактная сварка осуществляется при нагреве деталей электрическим током и их пластической деформации (сдавливании) в месте нагрева. Местный нагрев достигается за счет сопротивления электрическому току свариваемых деталей в месте их контакта. Существует несколько видов контактной сварки, отличающихся формой сварного соединения, технологическими особенностями, способами подвода тока и питания электроэнергией.

Виды контактной сварки: · Стыковой контактной сварке свариваемые части соединяют по поверхности стыкуемых торцов.

· Точечной контактной сваркой соединение элементов происходит на участках, ограниченных площадью торцов электродов, подводящих ток и передающих усилие сжатия.

· Рельефная контактная сварка осуществляется на отдельных участках по заранее подготовленным выступам - рельефам.

· Шовной контактной сварке соединение элементов выполняется внахлестку вращающимися дисковыми электродами в виде непрерывного или прерывистого шва.

Электронно-лучевая сварка. Сущность процесса сварки электронным лучом состоит в использовании кинетической энергии электронов, быстро движущихся в глубоком вакууме. При бомбардировке поверхности металла электронами подавляющая часть их кинетической энергии превращается в теплоту, которая используется для расплавления металла.

Для сварки необходимо: получить свободные электроны, сконцентрировать их и сообщить им большую скорость, чтобы увеличить их энергию, которая при торможении электронов в свариваемом металле превращается в теплоту.

Электроннолучевой сваркой сваривают тугоплавкие и редкие металлы, высокопрочные, жаропрочные и коррозионно-стойкие сплавы и стали.

1.3 Сварочное оборудование

В качестве источника питания для Электрической дуги применяют «Трансформатор», «Выпрямитель», «Преобразователь». Сварочный трансформатор предназначен для положения напряжения сети до необходимого рабочего напряжения и регулировки силы сварочного тока. Он состоит из: корпуса, сердечника, первичной и вторичной обмотки, переключателя ступеней, токоуказательного механизма. Сварочный выпрямитель представляет собой устройство, предназначенное для преобразования переменного тока в постоянный. Он состоит из: силового трансформатора, блока силовых вентилей, стабилизирующего дросселя, блока защиты, системы управления вентилями.

Сварочный преобразователь - это машина, служащая для преобразования переменного тока в постоянный сварочный ток. Преобразователь состоит из: генератора постоянного тока и приводного трехфазного двигателя, находящихся на одном валу и в одном корпусе. При изготовлении Балки я буду использовать выпрямитель ВДУ-601 - Выпрямитель дуговой универсальный номинальная мощность которого 600 Ампер номер модификации 1.

В настоящее время существует большое количество видов и типов сварки, вот только некоторые из них: - ручная электродуговая с - аргонодуговая сварка - полуавтоматическая сварка - плазменная сварка - точечная сварка - газовая сварка - контактная сварка (сопротивлением) - электронно-лучевая сварка - лазерная сварка - термическая сварка варка. Каждому виду соответствует свое специальное оборудование.

Но в данной работе нас интересуют устройства, производящие сварку с помощью электрического тока.

Электродуговой сварочный аппарат, как правило, представляет собой источник питания постоянного или переменного тока, сварочная цепь которого гальванически развязана от сети электропитания, выполняющий функцию дуговой сварки плавлением, контактной сварки, сварки давлением. Он может представлять собой простой трансформатор, а так же сложный высокотехнологический агрегат. В течение последних 100 лет для того, чтобы получить источник питания для сварки, использовалось большинство из доступных электрических и электронных технологий: от обыкновенного трансформатора до инверторов, обеспечивающих резонанс на частоте переключения более 100 КГЦ, от селеновых диодов до 32-разрядных микропроцессоров.

Список литературы
1. ГОСТ 12,1,035-78

2. ГОСТ 12,4,080-79

3. ГОСТ 14651-78Е

4. Казаков Ю.В. Сварка и резка металла учебное пособие для начально-профессионального образования под редакцию Ю.В. Козлова 4 издания испр.м издательский цех «Академия» 2012-400с.

5. Маслов Б.Г. Производство сварных конструкций. учебник для студентов, учащихся средне профессионального образования М. издательский центр «Академия» 2010-281с.

6. Хромченко Ф.А. Сварочное пособие электросварщика - второе издание. ИСПР-М машиностроение 2011-416с.

7. В.В. Овчинников Оборудование механизация и автоматизация сварочных процессов. М издательский центр 2010

8. В.М. Рыбаков Справочник молодого газосварщика и газорезчика. М. издание машиностроение 2011.

Размещено на .ur
Заказать написание новой работы



Дисциплины научных работ



Хотите, перезвоним вам?