Понятие и сферы использования стали в современной промышленности, ее классификация и разновидности. Порядок и критерии определения свариваемости стали. Механизм подготовки стали к сварке, виды дефектов и этапы их устранения, экономическая эффективность.
Аннотация к работе
Дальнейшее развитее сварки нашло применение в работах Н.Г. С именем Славянова связано развитие металлургических основ электрической сварки и создание метода сварки металлическим электродом. Славянов являлся инженером-металлургом, глубоко понимал физико-химическую сущность процессов, происходящих при сварке и разработал ряд флюсов и шлаков, позволяющих получить высококачественный, наплавленный метал. Разработаны и применяются в некоторых отраслях промышленности новые методы сварки: сварка давлением, трением, ультразвуком, токами высокой частоты, плазменной дугой, сварка электронным лучом в вакууме, диффузионная сварка в вакууме, взрывом, сварка под водой лучом лазера. Стали, углеродистые обыкновенного качества подразделяются на три группы: Группа А - по механическим свойствамПолуавтомат А - 547У для сварки в газе: представляет собой пульт управления, горелки, шланга для подачи проволоки, чемодана с подающим механизмом и катушки для проволоки, сварочного провода, кнопки «Пуск» для подачи напряжения от источника питания для дуги и двигателя полуавтомата. При сварке углом назад улучшается видимость зоны сварки, повышается глубина провара и наплавленный металл повышается глубина провара и наплавленный металл получается более плотным. При сварке наклонным электродом горелка наклоняется поперек шва под углом 30 - 45о к вертикали, а вдоль шва - на 5 - 15о. Сварку производим в той же последовательности, что и сборку для уменьшения деформаций и напряжений при сварке. Приводят к ним и неравномерный нагрев и охлаждение, усадка металла шва, неправильный выбор способа сварки, сварка при низкой температуре, разница химического и электродного составов основного металла, повышенное содержание фосфора и серы в стали; наличие дефектов сварки (поры, шлаковые включения, непровары, подрезы); сосредоточение нескольких швов на небольшом участке сварного соединения (конструктивный недостаток).Для рассмотрения теоретических вопросов были изучены восемь источников литературы, документация технологических процессов, технологические карты.
В 1802 году В.В. Петров впервые в мире открыл явление электрической дуги и указал на возможность использования тепловой энергии дуги в расплавлении металлов. Он первый построил самую большую для того времени батарею, при помощи которой и проводил свои опыты. Эти замечательные опыты с электрической дугой В.В. Петров опубликовал в 1803 году. В ней указывается на возможность применения электрической дуги.
Первый в мире электродуговую сварку осуществил русский инженер Николай Николаевич Бенардос (1842-1904 гг.). Работы над созданием крупных аккумуляторных батарей привели его в 1882 году к изобретению способа электрической дуговой сварки металлов в России и ряде других стран.
Дальнейшее развитее сварки нашло применение в работах Н.Г. Славянова (1854-1897 гг.). С именем Славянова связано развитие металлургических основ электрической сварки и создание метода сварки металлическим электродом. Ему также принадлежит заслуга создания автоматического регулятора длины дуги и первого сварочного генератора.
Н.Г. Славянов на Пермских пушечных заводах, начальником которых он являлся, организовал значительный по тем временам электросварочный цех и выполнявший большое количество сварочных работ с искусством заслуживающий внимание и в настоящее время. С 1891 по 1894 года лично С.Г. Славяновым и под его руководством выполнено ремонтно-сварочных робот на 1631 изделий с общим весом 250 тонн и израсходовано при этом 11 тонн электродов.
Н.Г. Славянов являлся инженером-металлургом, глубоко понимал физико-химическую сущность процессов, происходящих при сварке и разработал ряд флюсов и шлаков, позволяющих получить высококачественный, наплавленный метал.
Развитие сварки можно разделить на три этапа: первый этап с 1924 по 1935 год. Сварочный процесс в то время осуществлялся вручную, электродами без покрытия или с тонким изолирующим покрытием электродов.
Второй этап с 1935 по 1940 год. В эти годы сварка широко внедрялась во всех отраслях промышленности на базе применения электродов со специальным покрытием.
Третий этап с 1940 года. Этот этап характеризуется максимальным внедрением механизации в сварочный процесс на базе разработанного в 1940 году под руководством Е.О. Патонова современного способа автоматической сварки под слоем флюса.
Большие заслуги в деле развития и совершенствования теории и практики сварочного производства имеют коллективы Института им. Е.О. Патона АНУССР, ЦНИИТМАШ, ЛПИ им. Калинина, МВТУ им. Баумана, отраслевых ЦНИИ, завод «Электрик», Кировского, Уралмаш и др.
Применение сварки дает не только экономию металла (на 20-25%), но и экономию времени и рабочей силы.
Разработаны и применяются в некоторых отраслях промышленности новые методы сварки: сварка давлением, трением, ультразвуком, токами высокой частоты, плазменной дугой, сварка электронным лучом в вакууме, диффузионная сварка в вакууме, взрывом, сварка под водой лучом лазера. В ближайшие годы можно достичь серьезных дальнейших успехов в развитие и в промышленном применении новых видов сварки. Произошли достижения в области механизации и автоматизации сварочных процессов, которые позволили поднять на высокий технический уровень изготовление котлов, труб и трубопроводов, морских и речных судов, нефтеаппаратуры, прокатных станков, мощных прессов и насосов и других машин и механизмов.
1. Основная часть
1.1 Классификация стали
Сталью называется сплав железа с углеродом, где содержание углерода до 2%.
Стали подразделяются на углеродистые и легированные. По назначению различают, стали конструкционные с содержанием углерода в сотых долях и инструментальные с содержанием углерода в десятых долях процентах.
Основным элементом в углеродистых и конструкционных сталях является углерод, который определяет механические свойства сталей этой группы. Углеродистые стали выплавляют обыкновенного качества и качественные.
Стали, углеродистые обыкновенного качества подразделяются на три группы: Группа А - по механическим свойствам
Группа Б - по химическому составу
Группа В-по механическим свойствам и химическому составу.
Изготавливают, стали следующих марок: Группа А - Ст 0, Ст 1, Ст2, Ст3, Ст4, Ст5, Ст6;
Группа Б - БСТ 0, БСТ 1, БСТ 2, БСТ 3, БСТ 4, БСТ 5, БСТ 6
По степени раскисления сталь обыкновенного качества имеет следующее обозначение КП - кипящая ПС - полуспокойная СП - спокойная.
Кипящей стали, не обладают повышенной хладноломкостью, поэтому они не пригодны для изготовления ответственных сварных деталей и конструкций, работающих при низких температурах.
Полуспокойные стали в меньшей степени склонны к трещинообразованию при сварке, чем кипящие.
Хорошо свариваются, спокойные стали, они имеют однородную структуру и могут применяться для изготовления ответственных сварных конструкций. Углеродистые стали делятся в свою очередь на низкоуглеродистые, среднеуглеродистые и высокоуглеродистые стали.
Низкоуглеродистые стали содержат углерода до 0,20%, свариваются хорошо, и не требуют, по той либо особой технологии.
Среднеуглеродистые стали с содержанием углерода до 0,45%, свариваются несколько хуже. При сварке этих сталей в участках, принадлежащих к сварному шву, образуются закалочные зоны, в которых могут возникать трещины.
Высокоуглеродистые стали с содержанием углерода более 0,45%, обладают плохой свариваемостью, и требуют при сварке ряда технологических ограничений.
Легированной сталью называется такая сталь, в составе которой имеются в определенных количествах специальные легирующие элементы до 65%, введенные с целью придания стали особых механических и физико-химических свойств.
Все легированные стали, по своему назначению могут быть подразделены на следующие группы: низколегированные стали - с содержанием легирующих элементов до 2,5%, эти стали, производятся, для получения стали высокими механическими свойствами, работающих при нормальной температуре. В качестве легирующих элементов в них содержится недефицитные материалы, как например: марганец, кремний, хром.
Среднелегированные стали - содержание легирующих элементов в этих сталях от 0,25% до 10%. Эти стали применяются для специальных механических конструкций. Эта группа сталей отличается повышенным содержанием углерода от 0,2% до 0,5% и легирующими элементами, вызывающими глубокую прокаливаемость.
Эти стали приобретают повышенные механические свойства только после соответствующей термической обработки.
Высоколегированные стали - содержание легирующих специальных элементов в этих сталях от 10% до 65%. Эти стали, обладающие особыми физико-химическими (нержавеющие и жаропрочные) эти стали свариваются плохо.
Маркировка всех легированных конструкционных сталей однотипна, первые две цифры обозначают содержание углерода в сотых долях, буквы являются условным обозначением легирующих элементов, цифра после буквы обозначает содержание легирующих элементов в процентах, причем содержание, равно одному проценту и меньше не ставится. Буква «А» в конце марки показывает, что сталь высококачественная и имеет пониженное содержание серы и фосфора. Для отдельных легирующих элементов приняты следующие буквенные обозначения: Н - никель, Х - хром, В-вольфрам, Ф - вонадий, К - коболь, С - кремний, М - молибден, Г - марганец, Д - медь, Т - титан, Ю - алюминий.
Коробчатая конструкция изготовлена из стали Ст 3, она имеет следующий химический состав: Fe - до 99%
C - 0,05 - 1,7%
Si - 0,15 - 0,35%
Mn - 0,3 - 0,8%
S - до 0,06%
P - до 0,07%
И относится по классификации стали к низкоуглеродистой, т. к. содержание углерода в ней до 0,25%.
1.2 Определение свариваемости стали
Свариваемость стали.
Под свариваемостью понимается свойства металла или свойства металла образовывать установленной технологии сварки соединения, отвечающие требованиям, обусловленным конструкцией и эксплуатацией изделия.
При определении понятия свариваемости необходимо различать физическую, технологическую и эксплуатационную свариваемость.
Физическая или металлургическая свариваемость определяется процессами, происходящими на границе соприкасания свариваемых деталей при различных физико-химических методах соединения металлов.
На границе соприкасания соединяемых деталей должны произойти физико-химические процессы (рекристаллизация, химическое соединение и т.д.), в результате которых образуется прочное неразъемное соединение - сварка.
Под технологической свариваемостью понимается возможность получения сварного соединения определенным способом сварки. Основными показателями технологической свариваемости является стойкость расплавленного металла при сварке против образования горячих трещин и изменения в металле под действием термического цикла сварки. Технологическая свариваемость устанавливает оптимальные режимы сварки, способы сварки, технологическую последовательность выполнения работ, обеспечивающие получение требоваемого сварного соединения.
Данные эксплуатационной свариваемости определяют конкретной области и условия допустимого применения материалов, сварных конструкциях и сварных изделиях.
На свариваемость металлов и сплавов оказывают влияние химические элементы, входящие в их состав.
Свариваемость стали изменяется в зависимости от содержания в ней углерода и легирующих элементов.
По свариваемости стали делятся на четыре группы: Первая группа - хорошо сваривающиеся стали, у которых Сэкв не более 0,25%. Эти стали, при обычных способах сварки не дают трещин, сварка таких сталей выполняется без предварительного и сопутствующего подогрева, без последующей термической обработки.
Вторая группа - удовлетворительно сваривающиеся стали, у которых
Сэкв в пределах от 0,25% до 0,35%, такие стали допускают сварку без появления трещин только в нормальных производственных условиях, когда температура окружающей среды выше ноля градусов и отсутствует ветер и т.д.
В условиях, отличающихся от нормальных предварительным подогревом или с предварительной и последующей термообработкой.
Третья группа - С ограниченной свариваемостью, где С экв в пределах от 0,35% до 0,45%. К этой группе относятся стали, которые в обычных условиях сварки склоны к образованию трещин. Сварка таких сталей производится по специальной технологии, регламентирующей режимы предварительной термообработки и тепловой обработки после сварки.
Четвертая группа - с плохой свариваемостью, где С экв более 0,45%. Стали, входящие в эту группу, наиболее трудно поддается сварке, склонны к образованию трещин. Сварка их выполняется с обязательной предварительной термообработкой перед сваркой, подогревом в процессе сварки и последующей термообработкой. Температура подогрева для низколегированных сталей четвертой группы в зависимости от величины, для предупреждения образования трещин сварки сталь этой группы выполняется с С экв принимается следующее:
Эквивалент углерода (С экв) в% 0,58 0,60 0,62 0,74 0,85
Темп. подогрева (0С) (по Цельсию) 100 125 150 175 200
1.3 Требования к источникам питания дуги
Важное условие получения сварного шва высокого качества является устойчивость процесса сварки. Для этого источники питания дуги должны обеспечить возбуждение и стабильное горение дуги. Для этого необходимо чтобы источники питания дуги удовлетворяли следующим требованиям: 1. Напряжение холостого хода Uxx = 90 вольт для постоянного тока. Напряжение холостого хода равен 80 вольт для переменного тока - это необходимо для легкого возбуждения дуги и недолжно превышать норму безопасности.
2. Напряжение устойчивого горения дуги (рабочее напряжение) должно быстро устанавливаться и изменяться в зависимости от длинны дуги. С увеличением длинны дуги, напряжение возрастает. С уменьшением длины дуги напряжение убывает.
3. Ток короткого замыкания не должен превышать сварочный ток более чем на 40 - 50%, при этом выдерживать продолжительные короткие замыкания сварочной цепи.
4. мощность источника питания должна быть достатачной для выполнения сварочных работ.
Вывод
Для рассмотрения теоретических вопросов были изучены восемь источников литературы, документация технологических процессов, технологические карты.
В практической части было выбрано оборудование для полуавтоматической сварки под флюсом: источник питания - выпрямитель ВДГ - 301 и сварочного полуавтомата А - 547У
В графической части изображена установка для сборки коробчатой конструкции угловыми швами.
В экономической части рассчитана удельная себестоимость коробчатой конструкции. Она составила 186,4 (руб./кг)
В разделе «Охрана труда» подробно рассмотрены вопросы техники безопасности при выполнении сварочных работ.
Список литературы
1. Бельфор М.Г., Патон В.Е. Оборудование для дуговой и шлаковой сварки и наплавки. Уебн. пособие для курсов инструкторов по внедрению в народное хозяйство передовых методов сварки и наплавки. М., «Высшая школа», 1974
2. Виноградов В.С. Оборудование и технология дуговой автоматической и механизированной сварки: Учеб. для проф. учеб. заведений. - 2 - е изд., стер. - М.: Высшая школа; Изд. Центр «Академия», 1999