Способ вращения геометрической фигуры вокруг некоторой оси. Нахождение натуральной величины треугольника АВС при помощи вращения его вокруг горизонтали. Сущность способа плоскопараллельного перемещения. Определение расстояния от точки до плоскости.
Аннотация к работе
Реферат на тему: «Способы преобразования чертежа методом вращения вокруг проецирующей оси и методом плоскопараллельного перемещения»Способ вращения геометрической фигуры вокруг некоторой оси состоит в том, что фигура вращается вокруг оси до требуемого положения относительно заданной неподвижной системы плоскостей проекций. При вращении некоторой точки вокруг оси она описывает окружность, расположенную в плоскости, перпендикулярной оси вращения. Горизонтальная проекция О1центра вращения О совпадает с проекцией M1N1 оси, а горизонтальная проекция О1А1 радиуса вращения является его натуральной величиной. Вращаясь вокруг оси, точка А перемещается по окружности, которая на А1 проецируется в окружность, а на П2 - в отрезок прямой, параллельный оси х. Если точку вращать вокруг оси, перпендикулярной плоскости П2, то ее фронтальная проекция будет перемещаться по окружности, а горизонтальная - параллельно оси х.Сущность этого способа заключается в том, что все точки геометрической фигуры перемещаются в плоскостях, параллельных одной из плоскостей проекций. Следовательно, точки движутся в плоскостях уровня, и одна из проекций геометрической фигуры перемещается без изменения формы и размеров, а на другой проекции траектории движения точек параллельны оси x. Первоначально преобразуем прямую АВ во фронталь, переместив проекцию А1В1 без изменения размеров параллельно оси x (в произвольном месте). Новые фронтальные проекции определяем на пересечении линий связи от А В с траекториями движения точек. Проекция А В является натуральной величиной АВ, так как первым перемещением прямая преобразована во фронталь.