Розрахунок типових задач з математичної статистики - Курсовая работа

бесплатно 0
4.5 95
Закон розподілення дискретної випадкової величини, подання в аналітичній формі за допомогою функції розподілення ймовірності. Числові характеристики дискретних випадкових величин. Значення критерію збіжності Пірсона. Аналіз оцінок математичного чекання.


Аннотация к работе
Математичним очікуванням дискретної випадкової величини називають суму добутків усіх її можливих значень на їх імовірності: M [X] = x1p1 x2p2 … xnpn Якщо дискретна випадкова величина приймає лічену множину значень, то IMG_de7e7611-65fe-4069-9057-824b2b2553fb , математичне очікування існує, якщо ряд в правій частині рівності сходиться абсолютно. Математичне очікування має наступні властивості: математичне очікування постійної величини дорівнює самій постійній: M [C] = C Характеристиками розсіювання випадкової величини навколо математичного очікування служать дисперсія та середнє квадратичне відхилення. Дисперсією випадкової величини Х називають математичне очікування квадрату відхилення випадкової величини від її математичного очікування: D [X] = M [X - M [X]] 2=M [X2] - (M [X]) 2Ланка дослідів дала певну послідовність результатів. Вирахувати середнє значення виміряння, дисперсію, похибки, а також встановити закони розподілення результатів розрахунку [f (x), F (x)] Побудувати математичну модель, що характеризує випадкову величину та побудувати закони розподілення f (x) та F (x), використовуючи результати 100 експериментів. Побудувати математичну модель, що пояснює результати експериментів і вирахувати закони розподілення f (x) та F (x).Виділити найбільше та найменше значення випадкової величини X у вибірці (це потрібно для того, щоб провести розбиття діапазону зміни випадкової величини на інтервали). Провести розбиття діапазону зміни значень випадкової величини X на інтервали. Пояснюється це тим, що при меншій кількості значень випадкової величини X, що попадають в межі будь-якого інтервалу розбиття, випадкові відхилення (флуктуації) її значень від істинного зміщують практично отримане значення до сусідніх інтервалів. В нашому випадку (при розбитті діапазону зміни значень випадкової величини X на s інтервалів) кількість значень випадкової величини, що попадають в кожний інтервал, буде також випадковою величиною. Розширення здійснюється укрупненням інтервалів шляхом складання частот появи значень випадкової величини X в інтервалі, що не задовольняє умовам розбиття, з частотами появи значень випадкової величини X в сусідніх інтервалах.Нехай випадкова величина X приймає наступний безперервний ряд значень: 0.3977801.6260473.712942-0.732191-1.070720 Виділили найбільше та найменше значення випадкової величини X у вибірці: XMIN=-4.356973, XMAX=5.687231. Оцінивши число ступенів свободи k як k? s, робимо висновок, що знижувати кількість значень випадкової величини, які попадають в кожний інтервал розбиття не можна (враховуємо це при корекції розбиття в наступному пункті). Проводимо корекцію розбиття для застосування методу Пірсона (проводимо укрупнення крайніх інтервалів шляхом їхнього обєднання, доки не отримаємо мінімальну допустиму в методі Пірсона кількість значень випадкової величини, що попадають у формуємий інтервал; в нашому випадку ця кількість повинна бути не менша 10). Проводимо обчислення оцінок основних характеристик випадкової величини: математичного чекання, дисперсії та середньоквадратичного відхилення.У виконаній курсовій роботі наведено огляд теоретичних відомостей з курсу Теорії ймовірностей та математичної статистики, визначено алгоритм виконання типових завдань з Теорії ймовірностей.

План
Зміст

1. Теорія імовірностей та математичної статистики

1.1 Основні закони розподілення випадкових величин

1.2 Числові характеристики дискретних випадкових величин

2. Види типових задач з математичної статистики

3. Загальна методика розв‘язання типових задач

3.1 Обчислити значення критерію збіжності Пірсона

3.2 Зробити висновок про вірність висунутої гіпотези H0

4. Приклад розвязку типової задачі

Висновки

Список літератури

1. Теорія імовірностей та математичної статистики

1.1 Основні закони розподілення випадкових величин

Вывод
У виконаній курсовій роботі наведено огляд теоретичних відомостей з курсу Теорії ймовірностей та математичної статистики, визначено алгоритм виконання типових завдань з Теорії ймовірностей. І також виконано розрахунок типової задачі з визначення законів розподілення випадкових величин.

Список литературы
1. В.В. Гнеденко. Курс теории вероятностей. М. - Наука, 1988.

2. В.П. Чистяков. Курс теории вероятностей. М. - Наука, 1982.

3. А.А. Боровков. Теория вероятностей.М. - Наука, 1988.

4. Б.А. Севастьянов. Курс теории вероятностей и математической статистики.М. - Наука, 1982.

5. Сборник задач по теории вероятностей, математической статистике и теории случайных функций (под редакцией А.А. Свешникова).

6. И.Н. Коваленко, А.А. Филлипов. Теория вероятностей и математическая статистика. М. - Высшая школа, 1988.

7. Е.С. Вентцель. Теория вероятностей. М. - Наука, 1969.

8. И.И. Гихман, А.В. Скороход, М.И. Ядренко. Теория вероятностей и математическая статистика. Киев - Высшая школа, 1979.

9. И.И. Гихман, А.В. Скороход. Введение в теорию случайных процессов.М. - Наука, 1969.

10. А.Т. Гаврилин, О.Н. Репин, И.П. Смирнов. Задачи по теории вероятностей, математической статистике и теории случайных процессов. Методическая разработка для студентов дневного отделения радиофизического факультета. Горький, ГГУ, 1983.

11. Г.И. Агапов. Задачник по теории вероятностей. М. - Высшая школа, 1994.

12. Большев Л.Н., Смирнов Н.В. Таблицы математической статистики. М.: Наука, 1965.

13. Боровков А.А. Математическая статистика. М.: Наука, 1984.

14. Коршунов Д.А., Чернова Н.И. Сборник задач и упражнений по математической статистике. Новосибирск: Изд-во Института математики им. С.Л. Соболева СО РАН, 2001.

15. Феллер В. Введение в теорию вероятностей и ее приложения. М.: Мир, Т.2, 1984.
Заказать написание новой работы



Дисциплины научных работ



Хотите, перезвоним вам?