Решение системы линейных уравнений - Курсовая работа

бесплатно 0
4.5 65
Характеристика методов решений систем линейных алгебраических уравнений, основные виды численных методов и применение программного продукта Delphi 5.0 как наиболее эффективного. Сущность методов Гаусса, Гаусса-Жордана и Якоби, особенности метода Зейделя.


Аннотация к работе
Эта задача имеет важное прикладное значение при решении научных и технических проблем. В прямых (или точных) методах решение системы получают за конечное число арифметических действий. К ним относятся известное правило Крамера нахождения решения с помощью определителей, метод последовательного исключения неизвестных (метод Гаусса) и его модификации, метод прогонки и другие. Сопоставление различных прямых методов проводится обычно по числу арифметический действий, необходимых для получения решения. Итерационные (или приближенные) методы являются бесконечными и находят решение системы как предел при k®? последовательных приближений x(k), где k - номер итерации.Чаще всего решение задач такими методами осуществляется поэтапно: на первом этапе систему преобразуют к тому или иному простому виду, на втором - решают упрощенную систему и получают значения неизвестных. С этой матрицей можно обращаться так же, как и с системой - переставлять строки, прибавлять кратное одной строки к другой, исключая неизвестные и приводя матрицу к треугольному или диагональному виду. Обозначим коэффициенты полученного приведенного уравнения , домножим его на коэффициент а21 и вычтем из второго уравнения системы, исключая тем самым х1 из второго уравнения (обнуляя коэффициент а12 матрицы). Поступим аналогично с остальными уравнениями и получим новую систему, матрица которой в первом столбце, кроме первого элемента, содержит только нули, т.е. На первом шаге после приведения первого уравнения исключается неизвестное x1 из второго уравнения, а затем с помощью приведенного второго уравнения - неизвестное x2 из первого.Для решения методом Зейделя система линейных алгебраических уравнений Ax = b должна быть приведена к виду x = Gx f , где G - некоторая матрица, f - преобразованный вектор свободных членов. Затем выбирается начальное приближение - произвольный вектор x(0) - и строится рекуррентная последовательность векторов x(1), x(2),..., x(k),... по формуле На практике это трудно проверить, и обычно пользуются достаточными условиями сходимости - итерации сходятся, если какая-нибудь норма матрицы меньше единицы, т.е. или . Метод Зейделя использует следующий алгоритм построения приближений: Если A - матрица с доминирующей диагональю, т.е. , то метод Зейделя сходится при любом начальном приближении x(0).Она дает гарантированно правильное решение системы линейных уравнений, если каждый элемент главной диагонали матрицы коэффициентов является единственным максимальным в своей строке, ненулевым, либо справедливы условия: максимальный элемент строки является единственным максимальным в своем столбце, ненулевым, а ни один из остальных элементов столбца не является максимальным в своей строке, все элементы каждой строки кроме максимального одинаковы. Программа строит график зависимости количества итераций от параметра релаксации для данной СЛАУ, находит параметр релаксации w, при котором решение достигается за минимальное количество итераций и, разумеется, само решение.begin randomize; begin delta:=E 1; while (delta>E) and (number_of_iteration <100) do begin for i:=1 to 6 do Xp[i]:=X[i]; if mi then begin for l:=1 to 6 do begin tmp:=A[l,m]; if (number_of_iteration>100) or (delta>E) then begin label2.Caption:="Программа не может решить данную СЛАУ.

План
Содержание

Введение.

1. Анализ существующих методов решения задачи.

2. Описание используемого метода.

3. Анализ результатов.

Вывод.

Список использованной литературы.

Приложение (распечатка программы, результатов).

Введение
Решение систем линейных алгебраических уравнений (СЛАУ) является одной из основных задач линейной алгебры. Эта задача имеет важное прикладное значение при решении научных и технических проблем. Кроме того, является вспомогательной при реализации многих алгоритмов вычислительной математики, математической физики, обработки результатов экспериментальных исследований.

Применяемые на практике численные методы решения СЛАУ делятся на две группы - прямые и итерационные.

В прямых (или точных) методах решение системы получают за конечное число арифметических действий. К ним относятся известное правило Крамера нахождения решения с помощью определителей, метод последовательного исключения неизвестных (метод Гаусса) и его модификации, метод прогонки и другие. Сопоставление различных прямых методов проводится обычно по числу арифметический действий, необходимых для получения решения. Прямые методы являются универсальными и применяются для решения систем до порядка 103. Отметим, что вследствие погрешностей округления при решении задач на ЭВМ прямые методы на самом деле не приводят к точному решению системы.

Итерационные (или приближенные) методы являются бесконечными и находят решение системы как предел при k®? последовательных приближений x(k), где k - номер итерации. Обычно задается точность e, и вычисления проводятся до тех пор, пока не будет выполнена оценка єх(k) - x(k-1) є< e. Число итераций n(e), которое необходимо провести для получения заданной точности, для многих методов можно найти из теоретических рассмотрений. Качество различных итерационных методов можно сравнивать по необходимому числу итераций n(e). Эти методы особенно предпочтительны для систем с матрицами специального вида - симметричными, трехдиагональными, ленточными и большими разреженными матрицами.

Выбор среды программирования.

После проведенного обзора программных средств мы выбрали среду программирования наиболее подходящую нам как очень удобное средство для разработки данного программного продукта. DELPHI 5.0 является наиболее выгодной нам средой программирования.

Вывод
Программа, разработанная в данной курсовой работе, реализует метод Зейделя для решения СЛАУ 6-го порядка. Она дает гарантированно правильное решение системы линейных уравнений, если каждый элемент главной диагонали матрицы коэффициентов является единственным максимальным в своей строке, ненулевым, либо справедливы условия: максимальный элемент строки является единственным максимальным в своем столбце, ненулевым, а ни один из остальных элементов столбца не является максимальным в своей строке, все элементы каждой строки кроме максимального одинаковы.

При исходных данных:

была достигнута точность 0,0001 в решении:

за 2 итерации при параметре релаксации w=0,97.

Программа строит график зависимости количества итераций от параметра релаксации для данной СЛАУ, находит параметр релаксации w, при котором решение достигается за минимальное количество итераций и, разумеется, само решение. Программа проста в эксплуатации и нетребовательна к ресурсам. Реализованная в современной среде разработки Delphi 5.0, она без труда может быть доработана или исправлена.

Недостатки программы: 1) применима не для всех систем линейных уравнений; 2)оптимальный параметр релаксации w вычисляется методом подбора, и, поэтому, количество итераций, требуемое для его отыскания достаточно велико(около 18000), однако, для современных ПК, это не является затруднением.

Список литературы
Волков Е.А. Численные методы. ? М.: Наука, 1987. ? 254 с.

Калиткин Н.Н. Численные методы. ? М.: Наука, 1978. ? 512 с.

Мудров А.Е. Численные методы для ПЭВМ на языках БЕЙСИК, ФОРТРАН и ПАСКАЛЬ. ? Томск, МП "Раско", 1992. ?270 с.

Самарский А.А., Гулин А.В. Численные методы. ? М.: Наука, 1989. ?432с.

Кэнту М. Delphi 4 для профессионалов ? СПБ: «Питер», 1999 ?1200с.

Delphi 5.0 help.
Заказать написание новой работы



Дисциплины научных работ



Хотите, перезвоним вам?