Решение нелинейных уравнений - Реферат

бесплатно 0
4.5 54
Сравнительный анализ итерационных методов решения нелинейных алгебраических и трансцендентных уравнений. Простейший алгоритм отделения корней нелинейных уравнений. Метод половинного деления. Геометрический смысл метода Ньютона. Метод простой итерации.


Аннотация к работе
При разработке алгоритмов, входящих в состав математического обеспечения САПР, часто возникает необходимость в решении нелинейных уравнений вида f(x) = 0, (1) где функция f(x) определена и непрерывна на некотором конечном или бесконечном интервале a <x <b.Значение аргумента x*, при котором функция f(x) обращается в нуль, т.е. f(x*) = 0, называется корнем уравнения. В таких случаях решается задача определения корней с некоторой заранее заданной степенью точности. В дальнейшем предполагаем, что уравнение (1) имеет только изолированные корни, т.е. для каждого из них существует некоторая окрестность, не содержащая других корней этого уравнения. Процесс нахождения изолированных действительных корней нелинейного уравнения включает два этапа: 1) отделение корней, т.е. нахождение интервалов [a, b], внутри которых содержится один и только один корень уравнения; Наиболее часто применяется метод отделения корней, основанный на следующем положении: если на концах некоторого интервала [a, b] значения непрерывной функции f(x) имеют разные знаки, т.е. f(a)f(b) <0, то на этом интервале уравнение (1) имеет хотя бы один корень.Для этого метода существенно, чтобы функция f(x) была непрерывна и ограничена в заданном интервале [a, b], внутри которого находится корень. Предполагается также, что значения функции на концах интервала f(a) и f(b) имеют разные знаки, т.е. выполняется условие f(a)f(b) <0. Для нахождения корня уравнения f(x) = 0 отрезок [a0, b0] делится пополам, т.е. вычисляется начальное приближение x0 = (a0 b0)/2. В противном случае выбирается один из отрезков [a0, x0] или [x0, b0], на концах которого функция f(x) имеет разные знаки, так как корень лежит в этой половине. В результате на некоторой итерации получается точный корень x* уравнения f(x) = 0, либо бесконечная последовательность вложенных отрезков [a0, b0], [a1, b1], ..., [ai, bi], ..., таких, что f(ai)f(bi) <0 (i =1, 2, ...), сходящихся к корню x*.Пусть дано уравнение f(x) = 0, где f(x) - непрерывная функция, имеющая в интервале (a, b) производные первого и второго порядков. Идея метода хорд состоит в том, что на достаточно малом промежутке [a, b] дугу кривой y = f(x) можно заменить хордой и в качестве приближенного значения корня принять точку пересечения с осью абсцисс. Тогда уравнение хорды, проходящей через точки A0 и B, имеет вид Если первая и вторая производные имеют разные знаки, т.е. f "(x)f "(x) <0, то все приближения к корню x* выполняются со стороны правой границы отрезка [a, b], как это показано на рис. Выбор формулы в каждом конкретном случае зависит от вида функции f(x) и осуществляется по правилу: неподвижной является граница отрезка [a, b] изоляции корня, для которой знак функции совпадает со знаком второй производной.Чтобы применить этот метод для решения уравнения (1) необходимо преобразовать его к виду . Далее выбирается начальное приближение и вычисляется x1, затем x2 и т.д.: x1 = j(x0); x2 = j(x1); …; xk = j(xk-1); ... нелинейный алгебраический уравнение корень Полученная последовательность сходится к корню при выполнении следующих условий: 1) функция j(x) дифференцируема на интервале [a, b]. При таких условиях скорость сходимости является линейной, а итерации следует выполнять до тех пор, пока не станет справедливым условие: . Следует выбирать такой, который удовлетворяет условию (8), что порождает сходящийся итерационный процесс, как, например, это показано на рис.Проблема повышения качества вычислений нелинейных уравнений при помощи разнообразных методов, как несоответствие между желаемым и действительным, существует и будет существовать в дальнейшем.

План
Содержание

Введение

1. Теоретическая часть

2. Метод половинного деления

3. Метод хорд

4. Метод Ньютона (касательных)

5. Метод простой итерации

Заключение

Список использованных источников

Введение
Основной целью реферата является изучение и сравнительный анализ итерационных методов решения нелинейных алгебраических и трансцендентных уравнений; реализация этих методов в виде машинных программ на языке высокого уровня и практическое решение уравнений на ЭВМ.

При разработке алгоритмов, входящих в состав математического обеспечения САПР, часто возникает необходимость в решении нелинейных уравнений вида f(x) = 0, (1) где функция f(x) определена и непрерывна на некотором конечном или бесконечном интервале a < x < b. В частности, в форме нелинейных уравнений представляются математические модели анализа статических свойств объектов проектирования или их элементов.

1.

Вывод
Проблема повышения качества вычислений нелинейных уравнений при помощи разнообразных методов, как несоответствие между желаемым и действительным, существует и будет существовать в дальнейшем. Ее решению будет содействовать развитие информационных технологий, которое заключается как в совершенствовании методов организации информационных процессов, так и их реализации с помощью конкретных инструментов - сред и языков программирования.

Список литературы
1. Алексеев В. Е., Ваулин А.С., Петрова Г. Б. - Вычислительная техника и программирование. Практикум по программированию :Практ .пособие/ -М.: Высш. шк. , 1991. - 400 с.

2. Абрамов С.А., Зима Е.В. - Начала программирования на языке Паскаль. - М.: Наука, 1987. -112 с.

3. Вычислительная техника и программирование: Учеб. для техн. вузов/ А.В. Петров, В.Е. Алексеев, А.С. Ваулин и др. - М.: Высш. шк., 1990 - 479 с.

4. Гусев В.А., Мордкович А.Г. - Математика: Справ. материалы: Кн. для учащихся. - 2-е изд. - М.: Просвещение, 1990. - 416 с.

Размещено на .ru
Заказать написание новой работы



Дисциплины научных работ



Хотите, перезвоним вам?