Разделение смеси жидкостей на составляющие. Применение ректификации с использованием ректификационных колонн. Технологический расчет теплообменного аппарата для подогрева исходной смеси водой и холодильников для охлаждения продуктов ректификации.
Аннотация к работе
В химической, нефтехимической, фармацевтической, пищевой и других отраслях промышленности часто возникает необходимость разделить смеси двух или большего числа жидкостей на отдельные составляющие. Процесс разделения основан на том, что все жидкости, составляющие смеси, имеют разные летучести или, иначе говоря, - разные температуры кипения при одинаковом внешнем давлении. Пары над смесью оказываются обогащенными парами более летучих компонентов. Если смесь таких паров отделить от жидкой фазы и полностью сконденсировать, то состав полученного конденсата будет таким же, что и состав паров. Основной объем насадочной колонны заполняется беспорядочно насыпанной дисперсной насадкой, т.е. твердым материалом, химически инертным по отношению к обеим фазам и к целевому компоненту (кольца Рашига, Седла Берля, Инталокс и др.).Необходимо спроектировать ректификационную установку для непрерывного разделения исходной смеси.Для начала отметим, что легколетучим компонентом данной смеси является ацетон, а инертной фазой - метиловый спирт (метанол). Зная производительность колонны по исходной смеси и необходимые концентрации (массовые), можно найти производительность колонны по дистилляту () и кубовому остатку () на основании уравнения материального баланса. Отсюда, решая систему двух уравнений с двумя неизвестными получим: Нагрузка ректификационной колонны по пару и жидкости определяется рабочим флегмовым числом R и уравнениями рабочих линий в верхней и нижней частях колонны. (4) где - молярные доли легколетучего компонента в жидкости, ; - концентрация легколетучего компонента в паре, находящегося в равновесии с жидкостью, .Найдем средние массовые расходы жидкости , и пара , для верхней (индекс в) и нижней (индекс н) частей колонны по соответствующим формулам: Для жидкости: (8) (8а) где - мольные массы дистиллята, кубового остатка и питания исходной смеси, определяемые по формулам (9а, б, в), кг/кмоль; - средние мольные массы жидкостей в верхней и нижней частях колонны, определяемые по формулам (10а, б), кг/кмоль. (10б) где и - средний молярный состав жидкостей в верхней и нижней частях колонны соответственно, определяемый по формулам: . Для пара: (11а) , (11б) где - средние мольные массы паров в верхней и нижней частях колонны, кг/кмоль, определяемые по формулам: (12а) В данных формулах присутствуют средние молярные концентрации паров в верхней и нижней частях колонны, которые можно найти по уравнениям рабочих линий (6а) и (7а).Гидравлический расчет насадочных колонн включает в себя: определение рабочей скорости пара; определение диаметра колонны; расчет плотности орошения; расчет гидравлического сопротивления 1 м орошаемой насадки; определение активной поверхности насадки.В ректификационных колоннах при противотоке пара и жидкости необходимо знать так называемую рабочую скорость движения потоков пара, так как от этого зависит интенсивность процесса переноса целевого компонента между газовым потоком и пленкой жидкости. Чем больше скорость, тем интенсивнее процесс переноса, однако при больших скоростях сильно возрастает гидродинамическое сопротивление, что может привести к уносу жидкости из вертикального аппарата. Для определения рабочей скорости сначала найдем предельную скорость пара wпр, при которой произойдет захлебывание колонны. (16) где - предельная скорость пара в критических точках, м/с; а - удельная поверхность насадки, м2/м3; ? - свободный объем насадки, м3/м3; ?х - динамический коэффициент вязкости жидкости, МПА•с; и - массовые расходы жидкой и паровой (газовой) фаз, кг/с; и - плотность жидкости и пара соответственно, кг/м3; А и В - коэффициенты, значения которых можно найти в таблицах [1,2]. Динамический коэффициент вязкости жидкости в верхней и нижней частях колонны, в виду аддитивности данного свойства, найдем по формуле: (17а)Для определения диаметра колонны воспользуемся формулой: (20) где Vy - объемный расход пара при рабочих условиях в колонне, м3/с. Седла Берля 12.5 мм: Седла Берля 25 мм: Седла Берля 38 мм: Керамические кольца Рашига 25*25*3: . 1.4 м: 1.6 м: Уточненную рабочую скорость газа проверяем по графической зависимости Эдулджи, где комплексы Y и X имеют следующий вид: (21) где - критерий Фруда рассчитывается по номинальному размеру насадки d (м); - критерий Рейнольдса (условный), также рассчитывается по номинальному размеру насадки d; - динамический коэффициент вязкости жидкости, ; и - соответственно плотность воды при 20 0С и орошаемой жидкости при температуре в колонне (см. формулы (14а, б)), кг/м3; и - плотность воздуха при 20 0С и пара (газа) при температуре в колонне, кг/м3. Сразу видим, что плотность орошения в колонне диаметром 1.6 м меньше, чем в 1.4 м, и даже не входит в рекомендуемый интервал (0.002-0.005) , следовательно далее будем рассчитывать колонну диаметром 1.4 Заранее определим: Критерий Рейнольдса: Седла Берля 12.5 мм: Седла Берля 25 мм: Седла Берля 38 мм: Стальные кольца Рашига 25*25*0.8: Стальные кольца Рашига 50*50*1: Керамические кольца Рашига 25*25*3: Керамические кольца Раш
План
Содержание
Введение
1. Технологические расчеты
1.1 Расчет ректификационной колонны
1.1.1 Материальный баланс колонны
1.1.2 Определение массовых и объемных расходов пара и жидкости
1.1.3 Гидравлический расчет колонны
1.1.3.1 Определение рабочей скорости пара
1.1.3.2 Определение диаметра колонны и плотности орошения
1.1.3.3 Гидравлическое сопротивление 1 м насадки
1.1.3.4 Определение активной поверхности насадки
1.1.4 Расчет высоты колонны
1.1.5 Тепловой баланс ректификационной колонны
1.2 Расчет теплообменных аппаратов, входящих в общую схему работы ректификационной колонны
1.2.1 Расчет теплообменного аппарата для подогрева исходной смеси водой
1.2.2 Расчет конденсатора-дефлегматора
1.2.3 Расчет куба-испарителя.
1.2.4 Расчет холодильников для охлаждения продуктов ректификации
Вывод
Список литературы
Приложения
Введение
В химической, нефтехимической, фармацевтической, пищевой и других отраслях промышленности часто возникает необходимость разделить смеси двух или большего числа жидкостей на отдельные составляющие. Наиболее характерным примером является разделение нефтепродуктов на отдельные фракции, обладающие различными летучестями.
Процесс разделения основан на том, что все жидкости, составляющие смеси, имеют разные летучести или, иначе говоря, - разные температуры кипения при одинаковом внешнем давлении. Следствием такого свойства жидкостей является различное количество паров компонентов над жидкой смесью. Пары над смесью оказываются обогащенными парами более летучих компонентов. Если смесь таких паров отделить от жидкой фазы и полностью сконденсировать, то состав полученного конденсата будет таким же, что и состав паров. Следовательно, новая жидкая смесь окажется в большей степени обогащенной относительно более летучим компонентом по сравнению с исходной жидкой смесью.
Для этого широко применяют ректификацию, которая осуществляется в аппаратах, называемых ректификационными колоннами. Они бывают с непрерывным контактом фаз - насадочные колонны, и со ступенчатым контактом фаз - аппараты тарельчатого типа (с колпачковыми, ситчатыми, клапанными и решетчатыми тарелками).
Основной объем насадочной колонны заполняется беспорядочно насыпанной дисперсной насадкой, т.е. твердым материалом, химически инертным по отношению к обеим фазам и к целевому компоненту (кольца Рашига, Седла Берля, Инталокс и др.). Назначение слоя насадки - создание значительной поверхности контакта жидкой и газовой фаз в результате стекания жидкости по всей поверхности элементов насадки в виде пленки и прохождения газового потока в пустотах между элементами насадки и внутри них. Поверхность контакта фаз приблизительно равна суммарной поверхности насадки.
В тарельчатой колонне жидкая и газовая фазы контактируют только на тарелках, где газ барботирует через слой жидкости. Жидкость перетекает с верхней тарелки на нижнюю по вертикальным перетокам, а газовая фаза проходит снизу вверх через отверстия тарелок и всплывает в слоях жидкости в виде многочисленных пузырьков. Поверхностью контакта фаз является суммарная поверхность всех газовых пузырьков, в слоях жидкости на тарелках.
Подлежащая разделению бинарная смесь начального состава вводится на некоторую промежуточную по высоте колонны тарелку (или промежуточную точку по высоте насадочной колонны). Смесь подается при температуре ее кипения (или близкой к ней). В кубе-испарителе из кипящей в нем кубовой жидкости непрерывно образуется пар. Чтобы поддержать энергоемкий процесс парообразования, в куб необходимо подавать греющий водяной пар, при конденсации которого выделяется необходимая теплота. Образующиеся в кубе-испарителе пары движутся вверх, вступают в контакт с жидкой фазой, обогащаются летучим компонентом. При этом жидкость обедняется им. Пройдя весь путь пар поступает в дефлегматор, где конденсируется, делится на два потока (флегму и дистиллят). Флегма возвращается в колонну, чтобы паровому потоку было из чего извлекать летучий компонент, обедняется более летучим компонентом и приходит в куб-испаритель. Таким образом, в ректификационной колонне осуществляется непрерывный процесс разделения подаваемой в колонну исходной смеси на дистиллят и кубовый остаток. Основные достоинства насадочных колонн - способность работать при больших нагрузках по жидкости, на потоках жидкости и пара, содержащих механические примеси, на агрессивных потоках. Эти колоны просты по монтажу и изготовлению, долговечны.