Рассмотрение становления математики как науки. Описание периодов элементарной математики и математики переменных величин. Создание аналитической геометрии, дифференциального и интегрального исчисления. Развитие математики в России в XVIII-XIX столетиях.
Аннотация к работе
Министерство образования и науки Российской Федерации Работу выполнил: Студент 2 курса„Математика ум в порядок приводит“ История развития математики - это не только история развития математических идей, понятий и направлений, но это и история взаимосвязи математики с человеческой деятельностью, социально-экономическими условиями различных эпох. Становление и развитие математики как науки, возникновение ее новых разделов тесно связано с развитием потребностей общества в измерениях, контроле, особенно в областях аграрной, промышленной и налогообложения.Иероглифическая система счисления имеет основание 10 и не является позиционной: для обозначения чисел 1, 10, 100 и т.д. в ней используется разные символы, каждый символ повторяется определенное число раз, и, чтобы прочитать число, нужно просуммировать значения всех символов, входящих в его запись. Сохранившееся документы показывают, что, основываясь на 60-ричной системе счисления, вавилоняне могли выполнять четыре арифметических действия, имелись таблицы квадратных корней, кубов кубических корней, сумм квадратов и кубов, степеней данного числа, были известны правила суммирования прогрессий. Вавилонская система счисления является комбинацией шестидесятеричной и десятичной систем с применением позиционного принципа; в ней используются всего два разных символа: один обозначает единицу, второй - число 10; все числа записываются при помощи этих двух символов с учетом позиционного принципа. Науке о числах и других математических объектах отводится основополагающее место в системе мировоззрения, то есть фактически математика объявляется философией. Выдающим достижением Демокрита в математике явилась также его идея о построении теоретической математики как системы.В XVII в. начинается новый период истории математики - период математики переменных величин. Галилей к 1638 г. создал механику свободного движения тел, основал теорию упругости, применил математические методы для изучения движения, для отыскания закономерностей между путем движения, его скоростью и ускорением. Прежде всего, его интересовала геометрия движения, и, применив к исследованию объектов алгебраические методы, он стал создателем аналитической геометрии. Аналитическая геометрия начиналась с введения системы координат. В честь создателя прямоугольная система координат, состоящая из двух пересекающихся под прямым углом осей, введенных на них масштабов измерения и начала отсчета - точки пересечения этих осей - называется системой координат на плоскости.В конце 16 века и особенно в 17 веке появились многочисленные рукописные руководства по арифметике, геометрии, в которых излагались довольно обширные сведения, необходимые для практической деятельности (торговли, налогового дела, артиллерийского дела, строительства и пр.). Оно посвящено арифметико-хронологическим расчетам, которые показывают, что в то время на Руси умели решать сложную задачу вычисления пасхалий (определения на каждый год дня наступления праздника пасхи), сводящуюся в своей математической части к решению в целых числах неопределенных уравнений первой степени. Арифметические рукописи конца 16-17 веков содержат, помимо описания славянской и арабской нумерации, арифметические операции с целыми положительными числами, а также подробное изложение правил действия с дробями, тройное правило и решение уравнений первой степени с одним неизвестным посредством правила ложного положения. Если, по мнению Петра, в молодую Академию должны были быть привлечены исключительно выдающиеся ученые, которые "совершенно и основательно дело свое разумеют", то математике в этом отношении особенно повезло. К самому концу XVIII столетия выдвигаются еще некоторые русские математики, так же, как и их предшественники, не внесшие еще серьезных вкладов в науку, но основательно изучившие математику, преподававшие ее в различных учебных заведениях и опубликовавшие ряд сочинений.В конце XVII и в XVIII веке все возрастающие запросы практики и других наук побуждали ученых максимально расширять область и методы исследований математики. Понятия бесконечности, движения и функциональной зависимости выдвигаются на первое место, становятся основой новых методов математики. Новые теории возникают не только в результате запросов естествознания или техники, а также из внутренних потребностей самой математики. Именно на этой почве были получены результаты Руффини и Абелем, завершившиеся несколько позднее тем, что французский математик Э.Галуа при помощи теории групп подстановок дал окончательный ответ на вопрос об условиях разрешимости в радикалах алгебраических уравнений любой степени. Таким образом, разработанные в первой половине XIX века способы обоснования и методы математики позволили математикам перестроить математический анализ, алгебру, учение о числе и отчасти геометрию в соответствии с требованиями новой методологии.
План
План
Введение
1. Период элементарной математики
2. Период создания математики переменных величин. Создание аналитической геометрии, дифференциального и интегрального исчисления
3. Развитие математики в России в XVIII-XIX столетиях
4. Основные этапы становления современной математики