Разработка технологической линии получения нектара "Мультифруктовый" - Курсовая работа

бесплатно 0
4.5 129
Описание натуральных соков в сухом виде: паст, гранул, порошков. Характеристика и значение химического состава плодов и ягод. Технологическая сущность процесса очистки воды, схемы производства нектара "Мультифруктовый". Материальный баланс производства.


Аннотация к работе
Предприятия соковой отрасли работают с соками трех видов: прямого отжима, консервированными и восстановленными. Сок прямого отжима с массовой долей растворимых сухих веществ - 10% получают в результате механического воздействия на свежие спелые фрукты, ягоды и овощи. В результате полного удаления свободной влаги и частичного - связанной концентрированный пастообразный продукт может быть досушен на атмосфере при температуре ? 50?С с получением сухого сока, в котором массовая доля растворимых сухих веществ превысит 70%. Сухой сок, полученный выпариванием при низких температурах, является натуральным продуктом и максимально сохраняет биологически активные вещества, концентрация которых может существенно превышать концентрацию в исходном сырье. Цель настоящей работы - разработка низкотемпературной технологии получения натуральных сухих соков с массовой долей растворимых сухих веществ более 70%, максимально сохраняющих биологически активные вещества и обладающих повышенным сроком хранения.В плодах и ягодах содержится от 72.9% (рябина) до 90.5% воды (земляника. До 95 воды в плодах и ягодах находится в свободной, подвижной форме и только не более 5% - в связанном состоянии, прочно удерживаемом клеточными коллоидами. Сахара в сочетании с кислотами и другими веществами обуславливают вкус плодов и ягод, их технологические особенности. В плодах и ягодах чаще всего встречаются глюкоза и фруктоза. Глюкоза (виноградный сахар, декстроза) в свободном виде содержится в ягодах и плодах (особенно богат ею виноград - до 8%, сливы, черешни - 5.5%, крыжовник, малина).В тех случаях, когда вода отстаивается плохо, проводят одновременно и коагуляцию воды, для чего на 1 т воды задают от 50 до 150 г сернокислого глинозема (сульфата алюминия) в виде 5%-ного раствора или сульфата железа, или железного купороса в сочетании с гашеной известью и аэрированием. Биологическую очистку воду проводят фильтрованием через обеспложивающие фильтры или хлорированием. При хлорировании микроорганизмы уничтожаются не хлором, а кислородом, выделяющимся при распаде хлорноватистой кислоты, образовавшейся при растворении хлора в воде. Доза хлора, установленная органами государственной санитарной инспекции, с учетом хлоропоглощаемости воды и общего количества микробов в 1 мл воды, должна быть от 0,33 до 2 мг/л, длительность контакта (соприкосновения) хлора с водой - не менее 1 ч (с уменьшением дозы хлора период контакта может доходить до 2 ч, с увеличением дозы контакт можно уменьшить до 30 мин). Иногда применяют другой способ дозировки хлора, при котором предварительно насыщают хлором определенное количество воды, а затем эту хлорную воду вносят в воду, подлежащую хлорированию.Фильтр представляет собой цилиндрический стальной сосуд со сферическим днищем, который состоит из корпуса 1, крышки 2, решетки 4, свечей 5 и манометра 8. Между корпусом и крышкой помещена решетка, на которой укреплено 37 фильтрующих элементов, представляющих собой керамические свечи из фарфоровой массы, выполненные в виде стаканов со сферическими днищами. Вода, подлежащая фильтрации, подается в фильтр через нижний входной патрубок под давлением 0.03-0.035 МПА. Фильтр из 37 свечей фильтрует в 1 мин 74 л воды. Для обеспечения нормальной производительности фильтра необходимо ежедневно очищать свечи обратным током воды в течение 10 мин при давлении не свыше 0.03 МПА.В данном курсовом проекте было приведено исследование соков натуральных сухих: пасты, гранулы, порошки. Был приведен расчет керамического свечного фильтра и по полученным данным был сделан вывод, что необходим фильтр производительностью 2.5 м3/ч с 37 керамическими свечами.

План
Содержание

Введение. Соки натуральные сухие: пасты, гранулы, порошки

1. Характеристика и значение химического состава плодов и ягод

2. Технологическая сущность процесса очистки воды

3. Описание технологической схемы производства нектара «Мультифруктовый»

4. Расчет материального баланса нектара «Мультифруктовый»

5. Расчет и описание керамического свечного фильтра

Заключение

Список литературы

Приложения

Введение
Соки натуральные сухие: пасты, гранулы, порошки

Предприятия соковой отрасли работают с соками трех видов: прямого отжима, консервированными и восстановленными. Сок прямого отжима с массовой долей растворимых сухих веществ - 10% получают в результате механического воздействия на свежие спелые фрукты, ягоды и овощи. Концентрированный сок с массовой долей растворимых сухих веществ не более 70% - результат удаления влаги из сока прямого отжима путем выпаривания, вымораживания или продавливания через мембрану. Концентрированный сок используют для получения восстановленного сока. Концентрация сока, так же как и восстановление, сопровождается потерей биологически активных веществ. Дополнительные тепловые воздействия, вызванные необходимостью консервирования концентрированного сока, усиливают его потери. С уменьшением влажности срок хранения продукта возрастает и для концентрированного сока достигает 3 месяца при температуре 20?С.

Потери биологически активных веществ можно свести к минимуму, уменьшив тепловое воздействие на сок прямого отжима. Минимизация теплового воздействия возможна при условии мягкого выпаривания сока при пониженных температурах. Выпаривание при температуре 50?С позволяет максимально сохранять биологическую активность концентрированного сока. В результате полного удаления свободной влаги и частичного - связанной концентрированный пастообразный продукт может быть досушен на атмосфере при температуре ? 50?С с получением сухого сока, в котором массовая доля растворимых сухих веществ превысит 70%. При низкой влажности - 10% продукт будет обладать и повышенным сроком хранения. Сухой сок, полученный выпариванием при низких температурах, является натуральным продуктом и максимально сохраняет биологически активные вещества, концентрация которых может существенно превышать концентрацию в исходном сырье.

Цель настоящей работы - разработка низкотемпературной технологии получения натуральных сухих соков с массовой долей растворимых сухих веществ более 70%, максимально сохраняющих биологически активные вещества и обладающих повышенным сроком хранения.

Для выполнения исследований разработана малогабаритная вакуумная выпарная установка, включающая испаритель, конденсатор, сборник конденсата и форвакуумный насос. Насос создает разрежение в системе и позволяет достигать высокую производительность по выпариваемой влаге при температурах не более 50?С. Исследования выполнены в основном на сырье произрастающем в Орловской области.

Выпаривание сока черной смородины прямого отжима включает испарение свободной и связанной влаги. На этапе испарения свободной влаги температура кипения, как и скорость выпаривания, определяются давлением в испарителе и при фиксированной мощности нагрева остаются неизменными. Связанная влага испаряется с падающей скоростью, при этом температура в испарителе поддерживается на уровне температуры ? 50?С регулированием подведенной мощности. Во время эксперимента измеряли массу влаги, содержащейся в соке, и определяли влажность по отношению к массе сухих веществ.

По окончании вакуумного выпаривания были получены концентрированный продукт и конденсат, объем которых составили 2/3 от объема сока, загруженного в испаритель. Конденсат представлял собой чистую питьевую воду с ароматом черной смородины. Разбавление концентрированного сока конденсатом в соотношении один к двум позволяло восстанавливать его до исходного натурального сока прямого отжима.

В течение недели пастообразный концентрированный сок досушивали в конвективной сушилке при атмосферном давлении и температуре до 50?С. В процессе сушки паста была пропущена через экструдер с получением гранул. По завершении сушки были исследованы физико-химические свойства сухого сока. В результате лабораторных исследований установлено, что массовая доля растворимых сухих веществ в гранулированном соке черной смородины влажностью 11% достигла 78%, при этом кратность превышения относительно исходного продукта составила 7.8. Содержание органических кислот, приведенное к яблочной кислоте, достигло 68%, превысив содержание в ягоде в 28 раз. Пищевые волокна при кратности 3.2 составляли 13.4%. Содержание витамина С в гранулированном соке в 1.5 раза превысило содержание в ягоде, составив 300 мг/100 г.

Эксперименты были выполнены и с другими фруктовыми, ягодными и овощными соками прямого отжима, в общем составившими 23 наименования. В зависимости от свойств исходного продукта натуральные сухие соки принимали вид паст или гранул. Пастообразный вид имели соки: фруктовые - виноградный, вишневый, грушевый, яблочный; ягодные - арбузный, боярышниковый, крыжовниковый, рябиновый (обыкновенная и черноплодная), красносмородиновый; овощные - огуречный.

Гранулированный вид принимали соки: фруктовые - сливовый; ягодные - земляничный (полевая и садовая), калиновый, клюквенный, малиновый, черносмородиновый, черничный; овощные - свекольный, томатный, тыквенный.

Полученные сухие соки легко восстанавливаются и при использовании выпаренной из них влаги с ароматом исходного сырья позволяют полученные натуральные восстановленные соки с нужным содержанием растворимых сухих веществ.

При необходимости гранулированный сок может быть измельчен в порошок. Однако измельчение нецелесообразно проводить непосредственно перед использованием, так как мелкодисперсные порошкообразные соки, обладая большой поверхностью взаимодействия с кислородом воздуха, имеют недостаточно продолжительный срок хранения.

Сухие соки в виде паст и порошков исследованы на продолжительность хранения при температуре 20?С. В процессе эксперимента концентрировали содержание витамина С, как одного из наиболее лабильных элементов.

Порошок из пастеризованного сока черной смородины (80?С, 20 мин) уступает порошку из сока прямого отжима не только по внешнему виду, но и по биологической активности. Содержание витамина С в нем оказалось в 5.7 раз меньше, составив 53 мг/100 г.

Высокая концентрация биологически активных веществ превращает натуральные сухие соки в продукт с явно выраженным фармакологическим действием и требует тщательного изучения их свойств. Высокая концентрация биологически активных веществ в сочетании с возможностью длительного хранения в обычных условиях при комнатной температуре открывает большие перспективы перед сухими фруктовыми, ягодными и овощными соками в плане разработки новых продуктов для детского, диетического и специального питания. Разработанная технология может составить основу нового направления развития предприятий соковой отрасли.

Вывод
В данном курсовом проекте было приведено исследование соков натуральных сухих: пасты, гранулы, порошки. Я рассмотрела устройство керамического свечного фильтра для обеспложивающей очистки воды. Был приведен расчет керамического свечного фильтра и по полученным данным был сделан вывод, что необходим фильтр производительностью 2.5 м3/ч с 37 керамическими свечами. Также рассмотрен химический состав плодов и ягод для производства соков и нектаров. Приведен материальный баланс для приготовления 1000 л нектара «Мультифруктовый».

Курсовой проект содержит 34 страницы, 7 таблиц, 2 приложения.

Список литературы
1. Емельянов А.А. Соки натуральные сухие: пасты, гранулы, порошки. // Пиво и напитки, 2008. №2. с. 36-37.

2. Ширко Т.С., Ярошевич И.В. Биохимия и качество плодов. - М.: Наука и техника, 1991. 294 с.

3. Шобингер У. Фруктовые и овощные соки: научные основы и технология. - СПБ: Профессия., 2004. 640 с.

4. Балашов В.Е., Рудольф В.В. Техника и технология производства пива и безалкогольных напитков. - М.: Легкая и пищевая промышленность, 1981. 248 с.

5. Самсонова А.Н. Технология и оборудование сокового производства. - М.: Пищевая промышленность, 1966. 250 с.

6. Расчеты продуктов производства безалкогольных напитков. Учебное пособие/ Самар. Гос. техн. университет; сост. Н.В. Макарова. Самара, 2007. 24 с.

7. Кретов И.Т., Антипов С.Т., Шахов С.В. Инженерные расчеты технологического оборудования предприятий бродильной промышленности. М.: КОЛОСС, 2006. 391 с.
Заказать написание новой работы



Дисциплины научных работ



Хотите, перезвоним вам?