Автоматическое регулирование основных параметров котельной установки. Характеристики временных трендов и их оценивание. Выбор закона регулирования и расчет параметров регулятора. Идентификация объекта управления по временным трендам, создание модели.
Аннотация к работе
С развитием и широким распространением быстродействующих вычислительных машин и аппаратуры дистанционного измерения и передачи данных (телеметрической аппаратуры) наметилась тенденция к полной автоматизации процессов построения математических моделей объектов и созданию адаптивных систем управления, самонастраивающихся микропроцессорных регуляторов для различных технических систем. Совокупность таких воздействий окружающего мира на объект можно разделить на две группы в соответствии с характером влияния среды на переменные состояния (фазовые координаты) объекта. Эти воздействия приводят к изменению оператора объекта (системы) А, под которым понимают закон преобразования входных воздействий в выходные переменные объекта. При структурной идентификации определяют структуру и вид оператора объекта, или другими словами вид математической модели объекта. Одномерными называют объекты, имеющие один вход и один выход, многомерными - объекты, имеющие несколько входов и выходов, причем число входов не обязательно равно числу выходов.Таким образом, подводя итог работе, можно отметить, что в ходе ее выполнения были определены параметры регулирования системы, включающей в себя нелинейный теплоэнергетический объект (котел для подогрева воды).
План
Содержание
Введение
Описание объекта управления.
Характеристики временных трендов и их оценивание
Идентификация объекта управления по временным трендам
Расчет характеристик математической модели
Выбор и описание закона регулирования, и расчет параметров регулятора
Разработка структурной схемы системы
Заключение
Приложение
Введение
Автоматизация управления является наиболее эффективным средством повышения надежности и экономичности котельной установки. Введение автоматического управления позволяет повысить культуру труда и упростить ее обслуживание. Современная техника автоматизации достигла значительного совершенства, однако автоматизация котельных установок еще не нашла достаточного распространения и развития, особенно с применением современных средств автоматизации использующих микропроцессорное управление, и в ближайшие годы предстоит значительная работа в этой области.
В связи с этим в этой области возникает ряд задач требующих своего решения : Автоматическое регулирование основных параметров котельной установки, таких как давление пара и воды в определенных участках, температура пара, уровень воды в котлах и баках, избыток воздуха в топке, расход топлива. Автоматическое регулирование позволяет повысить к.п.д., увеличить надежность работы, облегчить условия труда и сократить количество обслуживающего персонала.
Автоматическое управление рабочими процессами, протекающими в котельных установках, и в первую очередь, динамическими процессами перехода из одного рабочего состояния в другое и аварийными режимами. Примером такой автоматизации является автоматизация пуска турбонасоса при падения давления в питательной магистрали и аварийном выключении другого насоса.
Ароматическая тепловая защита, преследующая цель предохранения агрегатов котельной от аварий.
Автоматизация дистанционного управления, позволяющая осуществлять дистанционное управление исполнительных органов и вспомогательных механизмов со щита управления.
Автоматическая блокировка, обеспечивающая автоматическое включение и выключение группы вспомогательных механизмов и органов управления в определенной последовательности, в соответствии с требованиями технологии. Так в аварийных режимах, автоматическая аварийная блокировка устраняет неправильные действия обслуживающего персонала.
Помимо основных задач автоматизации значительный эффект в упрощении обсаживания и облегчения работы может обслуживающего персонала может быть достигнут и при автоматизации вспомогательных операций, которыми являются: оперативный и учетный контроль показывающими и регистрирующими приборами, особенно на тепловых щитах. различные виды сигнализации (предупредительной, аварийной, контрольной и командной);
различные виды связи, обеспечивающие переговоры персонала, находящегося на различных рабочих местах.
Успешное решение выше перечисленных задач достигается введением различных устройств автоматизации, роль и функции которых весьма многообразны, а некоторые из них обязательно имеются во всех современных котельных установках средней и большой мощности. Автоматическому регулированию в первую очередь подвергаются процессы питания котла водой и горения [33].
Автоматическое регулирование процессов горения топлива дает возможность более точного поддержания оптимального соотношения между расходом топлива, воздуха и отсосом продуктов горения. Чем точнее работает комплекс регуляторов процесса горения топлива, тем лучше будут поддерживаться оптимальные соотношения процесса горения, тем выше будет к.п.д. агрегата. Особенно значительный выигрыш от автоматического регулирования процессов горения достигается при нестабильных режимах работы котельных агрегатов. В обычных эксплуатационных условиях отклонение от оптимальных режимов тем больше, чем меньше квалификация, количество и внимательность обслуживающего персонала. Особенно эти различия заметны при одновременном обслуживании нескольких котлов.
Даже при равномерной нагрузке, при автоматическом регулировании горения, повышение к.п.д составляет 2-3 % для мощных агрегатов и до 10% для средних и мелких котлов. При пиковых режимах эти цифры удваиваются.
1.
Описание объекта управления
Масляная система предназначена для снабжения маслом системы регулирования и подшипников турбоагрегата.
В системе регулирования и системе смазки применяется турбинные масла марки: Тп-22 по ГОСТ 9972-74, ТП-22С по ТУ 38.10182I-83 (с вязкостью 22ССТ при 500С). При эксплуатации этих масел руководствоваться инструкцией по эксплуатации турбинных масел ТИ 34-70-33-84.
Емкость масляной системы, включая маслопроводы, составляет около 16 м3.
Масляный бак, общий для системы смазки и системы регулирования, имеет емкость 14м3 (до верхнего предельного уровня). Бак снабжен указателем уровня масла и сигнализатором перепада уровня масла на сетчатых фильтрах.
Указатель уровня имеет контакты для подачи световых сигналов при минимальном и максимальном уровнях масла в баке. В масляном баке установлено два ряда сетчатых фильтров.
На масляном баке установлен фильтр тонкой очистки масла от механических примесей. Фильтрация производится пропуском масла через хлопчатобумажную ткань «фильтр-бельтинг». Масло постоянно поступает к фильтру из напорного маслопровода системы смазки до маслоохладителей и после фильтра сливается в грязный отсек маслобака. Производительность фильтра 7,0 м3/час.
Для обеспечения постоянной фильтрации масла на остановленной турбине предусмотрен шестеренчатый масляный насос типа Ш-40-4-18/4-1 по ТУ26-06-1087-84, задающий постоянную циркуляцию масла через фильтр тонкой очистки с расходом 18 м3/час.
Во время работы турбины снабжением маслом системы смазки и системы регулирования обеспечивается центробежным масляным насосом (главным масляным насосом - ГМН), установленным в корпусе переднего подшипника. Вращение насоса производится от вала турбины (РВД), с которым насос соединен зубчатой муфтой, Муфта допускает осевые перемещения РВД при относительном удлинении или укорочении ротора.
Производительность ГМН при частоте вращения ротора турбоагрегата (РТ) 3000 об/мин составляет примерно 4000 литров в минуту при давлении 1,956 Мпа.
Подача масла в систему смазки подшипников осуществляется с помощью двух инжекторов, питаемых силовым маслом с давлением 1,96 Мпа и включенных последовательно по инвертируемому маслу. Первый инжектор обеспечивает на всасывание ГМН подпор с давлением 0,1 Мпа. Второй инжектор подает масло в систему смазки и обеспечивает давление до маслоохладителей около 0,3 Мпа.
Давление масла после маслоохладителей на уровне оси подшипников 0,1 Мпа поддерживается редукционным клапаном.
Для обеспечения маслом турбоагрегата в период пуска и остановки масляная система имеет пусковой электронасос с двигателем переменного тока на 16,6 с-1 (1000 об/мин) - (пусковой масло насос - ПНМ). Этот же масляный насос обеспечивается электродвигателем переменног7о тока на 25 с-1 (1500 об/мин). На этих оборотах ПМН создает в системе регулирования давление 4,0 Мпа, что необходимо ля гидравлического испытания системы регулирования после монтажа или ревизии.
Система смазки имеет резервный маслонасос смазки с электродвигателем переменного тока и аварийный маслонасос с ЭД постоянного тока.
Для отсоса поров масла из бака установлен вентилятор - эксгаустер.
Турбоустановка имеет два маслоохладителя (МО) с поверхностью охлаждения 225 м2 и номинальным расходом масла через каждый МО 165 т/ч. Один МО резервный. Номинальный расход охлаждающей воды через каждый охладитель 150 м3/ч.
Гидравлическое сопротивление МО по маслу - 20 КПА по воде - 20,1 КПА.
Маслоохладители конструкции ПО ЛМЗ герметичные, с трубами, из коррозионно-стойкой стали, которые привариваются к трубным доскам. Конструкция МО обеспечивает плотность и исключает при нормальной эксплуатации возможность попадания масла в воду и наоборот (при этом давление воды больше давления масла).
Рекомендуемая разность давлений между водой и маслом должна быть минимальной.
Система смазки турбины снабжена шестью реле падения давления масла в системе смазки до II предела. Два РПДС используются в схеме защиты, один для включения ЭД аварийного маслонасоса и один для отключения ВПУ.
В защите участвуют одно РПДС с уставкой I предел и два РПДС с уставкой II предел. Срабатывание защиты по давлению масла происходит при условии срабатывания не менее двух РПДС (схема «2 из 3-х).
РПДС, участвующие в схеме защиты, объединены в одну группу, остальные во вторую. Каждая группа имеет самостоятельный подвод напорного масла и вентиль для снижения давления масла в РПДС при испытании.
Маслопроводы турбины снабжаются арматурой, необходимой для нормального ее обслуживания, на трубопроводах слива из каждого подшипника имеется смотровое окно.
Основные технические данные МП-165-150-I
Расход масла 165 м3/ч
Расход воды 150 м3/ч
Поверхность охлаждения 225 м2
Число ходов масла 4
Число ходов воды 2
Начальная температура масла 550С
Конечная температура масла 440С
Максимальная температура масла на входе 650С
Начальная температура воды 330С
Конечная температура воды 390С
Максимальная температура воды на входе 370С
Скорость масла (между ребрами труб) 0,33м/с
Скорость воды (в трубах) 2,06м/с
Гидравлическое сопротивление: - по маслу 20КПА
- по воде 20,1КПА
Максимальное рабочее давление: - масла 0,5Мпа
- воды 0,5МПА
Функциональная схема системы регулирования температуры смазочного масла приведена на рис. 9. Она содержит два маслоохладителя параллельно подключенных к охлаждающей воде и охлаждаемому маслу. Охлажденное до нужной температуры масло подается в общий трубопровод, где происходит измерение его температуры с помощью термометра сопротивления. ТС. Измерительный сигнал от термометра сопротивлений поступает в регулирующий контроллер, где происходит его сравнение с заданной уставкой. При отклонении температуры масла от заданной контроллер вырабатывает сигнал управления, поступающий на исполнительный механизм М типа МЭО. Исполнительный механизм воздействует не задвижку изменяя расход охлаждающей воды, обеспечивая тем самым стабилизацию температуры масла.
Рис. 1.1. Функциональная схема регулирования температуры масла.
2. Характеристики временных трендов и их оценивание
Внешние воздействия на объект управления могут быть полезными (управляющими сигналами u) и помехами (возмущающими воздействиями f). Управляющие сигналы, вырабатываемые устройством управления, являются полностью наблюдаемыми. Возмущающие воздействия, в отличие от них, как правило, ненаблюдаемые и случайные сигналы. В результате выходные переменные объекта y(t) определяются не только входными сигналами x(t), но и ненаблюдаемыми и неуправляемыми воздействиями (помехами), что вызывает неконтролируемые отклонения выходных переменных от заданных значений. При повторения процессов управления, происходящих в системе, выходные переменные могут иметь различные значения при одних и тех же значениях времени отсчитываемых от начала процесса. Выходная величина объекта при каждом повторном цикле управления, в этом случае, представляет собой реализацию одного и того же случайного процесса управления.
Таким образом, под действием ненаблюдаемых, неуправляемых и случайных внешних воздействий наблюдаемые переменные объекта также становятся случайными сигналами, являющимися реализациями случайного процесса управления. Для количественной оценки и сравнения различных случайных сигналов используют различные характеристики этих сигналов, представляющие собой абстрактные математические понятия, которые существуют объективно, но не могут быть измерены или определены в строгом смысле слова.
К таким характеристикам относятся
Функция распределения вероятностей случайного процесса, или интегральная функция распределения. F(y,t), Функция распределения вероятностей, это вероятность того, что случайный процесс x(t) в момент времени t принимает значения меньше у
. (2.1)
Плотность вероятностей, или дифференциальное распределение (распределение) w(x,t).
, (2.2) откуда . (2.3)
Математическое ожидание случайного процесса
, . (2.4)
4. Дисперсия случайного процесса
, (2.5) или . (2.6)
5. Корреляционная (автокорреляционная) функция Rxx(t1,t2) . Корреляционная функция это математическое ожидание произведений двух значений одного и того же сигнала, сдвинутых по времени.
. (2.7)
6. Взаимная корреляционная функция Rxy(t1,t2). Взаимная корреляционная функция это математическое ожидание произведений двух сигналов один из которых сдвинут относительно другого по времени.
. (2.8)
Точное определение этих характеристик невозможно, так как неизвестен вид закона распределения и конечно число реализаций случайного процесса. Поэтому в реальных условиях эти характеристики вычисляют приблизительно, оценивая их с какой-то погрешностью.
Оценка характеристик случайных процессов проводится на основе роинятия гипотез о стационарноси и эргодичности случайного процесса.
Случайный процесс называют стационарным , если характеризующая его функция распределения не зависит от времени. Отсюда следует, что от времени не будут зависеть и все характеристики случайного процесса. Условие стационарнрсти значительно упрощает вычисление характеристик случайных процессов, так как в выражениях (2.1) - (2.8) исчезает аргумент времени. Однако и вэтом случае для вычисления характеристик необходимо достаточно большое количество независимых реализаций случайного процесса (ансамбль реализаций).
Эргодическая гипотеза позволяет заменить ансамбль реализацй одной реализацией снятой за достаточно продолжительный интервал времени. Согласно эргодической гипотезе средние значения случайного сигнала по множеству и времени совпвдают.
. (2.9)
Тогда для случайных стационарных эргодических процессов оценки их характеристик (2.1) - (2.8) с учетом конечности времени наблюдения Т , записываются в следующем виде.
1. Оценка математического ожидания
. (2.10)
2. Оценка дисперсии
, (2.11) или . (2.12)
3. Оценка корреляционнгой функции
, (2.13) где - центрированный случайный сигнал.
Корреляционную функцию центрированного сигнала еще называют ковариационной или автоковариационной функцией.
4. Спектральная плотность мощности , связанная с корреляционной функцией преобразованием Фуре.
. (2.14)
Для получения приемлемой точности оценох характеристик случайных процессов длительность реализации процесса по которой вычисляются оценки должна превышать интервал корреляции. Интервал корреляции ето значение аргумента корреляционной функции начиная с которого все ее последующие значения не превышают .
Более подробно о вычислении характеристик случайных процессов и их оценок можно познакомиться в специальной литературе [8, 12, 23, 25, 27, 31, 32, 38, 49, 54, 59, 63, 77, 99].
На рис.2.1- 2.4 приведены статистические характеристики временных трендов системы.
Рис. 2.1. Временные тренды входного и выходного сигналов
Рис. 2.2. Корреляционные функции входного и выходного сигналов.
Рис. 2.3. Спектральные плотности входного и выходного сигналов.
Рис. 2.4. Гистограммы входного и выходного сигналов.
3.
Идентификация объекта управления по временным трендам
3.1 Основные понятия теории идентификации
Идентификация (отождествление) в технике связана с процессом построения модели исследуемого объекта. В дальнейшем под идентификацией понимается процесс построения математической модели технического устройства (объекта) по его измеряемым входным и выходным сигналам. При этом под объектом можно понимать любые материальные (физические процессы, технические объекты) и нематериальные (знаковые) элементы и системы Класс рассматриваемых моделей охватывает статические и динамические модели, описываемые соответственно алгебраическими и обыкновенными дифференциальными уравнениями.
С развитием и широким распространением быстродействующих вычислительных машин и аппаратуры дистанционного измерения и передачи данных (телеметрической аппаратуры) наметилась тенденция к полной автоматизации процессов построения математических моделей объектов и созданию адаптивных систем управления, самонастраивающихся микропроцессорных регуляторов для различных технических систем. Так, для идентификации широко привлекаются известные в статистике методы наименьших квадратов, максимального правдоподобия, стохастической аппроксимации и их разновидности [2, 3, 9, 23, 30, 32, 33, 73, 82, 99, 100].
Построение математической модели достаточно сложного объекта представляет собой довольно трудоемкий процесс, включающий этапы выбора вида и структуры модели идентифицируемого объекта, выбора или разработки метода и численных алгоритмов идентификации с учетом возможностей телеметрической аппаратуры и вычислительных средств, предварительной (первичной) обработки результатов телеизмерений, получения оценок характеристик модели, анализа этих оценок и проверки степени идентичности (адекватности) модели и реального объекта. Задача каждого из указанных этапов составляет весьма сложную проблему. Решение ее немыслимо без глубокого знания соответствующих дисциплин и теории. В целом же инженеру, работающему в области идентификации технических объектов, необходимо достаточно свободно ориентироваться в теории вероятностей, современной математической статистике и вычислительной математике, а также иметь представление о теории моделирования, теории управления и принципах построения и функционирования идентифицируемых объектов.
В настоящее время проблемы, связанные с созданием математических моделей объектов технологических процессов, экономики и живой природы, формируют одно из основных направлений науки и техники - моделирование. Это объясняется тем, что математические модели объектов широко применяются как при создании систем управления этими объектами, так и при их эксплуатации.
Объекты и системы представляют собой совокупность материальных тел, находящихся в непрерывном взаимодействии друг c другом и с окружающей средой. Построение математической модели объекта может производиться несколькими методами: аналитическим, экспериментальным и экспериментально-аналитическим [49, 57, 73, 100].
Аналитический метод предусматривает получение математического описания объекта на основе законов физики, механики, химии и т. д. Такой подход дает положительный результат, если рассматриваемый объект достаточно прост по структуре и хорошо изучен. Если же объект изучен недостаточно или же настолько сложен, что аналитическое описание его математической моделью практически невозможно, прибегают к экспериментальным методам, суть которых сводится к статистической обработке технологических данных. При экспериментально-аналитическом методе априорная модель, полученная аналитическим путем, уточняется в соответствующих экспериментах.
Взаимодействие объекта с окружающей средой поясним с помощью простейшей схемы (рис. 3.1). Воздействия внешней среды на объект в обобщенном виде изображены стрелками, направленными к объекту и обозначенными через x и v. Объект, в свою очередь, воздействует на окружающую среду. Это воздействие показано стрелкой, направленной от объекта и обозначенной через y. Величину y принято называть выходным воздействием или выходной величиной объекта.
Рассмотрим более подробно воздействие среды на объект. Совокупность таких воздействий окружающего мира на объект можно разделить на две группы в соответствии с характером влияния среды на переменные состояния (фазовые координаты) объекта. В первую группу входят те воздействия, которые в точке приложения изменяют переменные состояния аддитивно. Это означает, что сигналы, пропорциональные этим воздействиям, суммируются с сигналами, пропорциональными соответствующим переменным состояния.
Эти воздействия называют «входными», или «внешними», воздействиями. В дальнейшем будем называть эти воздействия «входными». Входные воздействия могут быть полезными (управляющими сигналами u) и помехами (возмущающими воздействиями f).
Вторая группа воздействий внешней среды изменяет переменные состояния объекта косвенно, обычно не аддитивно. Эти воздействия приводят к изменению оператора объекта (системы) А, под которым понимают закон преобразования входных воздействий в выходные переменные объекта. Вторую группу воздействий будем называть операторной, а воздействия - операторными.
Так, например, повышение температуры электродвигателя приводит к падению мощности и даже выходу его из строя.
В общем случае входные и выходные воздействия могут описываться определенными функциями (обычно функциями времени). Математически соответствие между входной и выходной функциями можно записать в виде выражения
(3.1) где A(f) - оператор, зависящий от возмущений (операторных воздействий); - вектор выходных координат объекта; - вектор управления (входа).
Оператор объекта является его математической характеристикой, т. е. математической моделью объекта.
Примерами операторов могут быть: - оператор дифференцирования p: ; (3.2)
- дифференциальный оператор D(y) : , (3.3)
- оператор обыкновенного линейного дифференциального уравнения n-го порядка L(y)
, (3.4)
- линейный интегральный оператор
, (3.5) где - функция веса объекта;
Математически операторы определяются в соответствующих пространствах, т. е. на множествах элементов, над которыми совершаются преобразования. Примерами таких пространств являются пространства: непрерывных функций; непрерывных функций, имеющих непрерывные производные до n-го порядка (n > 0); функций с суммируемым квадратом и т. д. Множества входных и выходных сигналов объектов и систем могут рассматриваться как те или иные метрические пространства [4,12, 13, 37, 44].
Формально оператор характеризуется структурой и параметрами. Так, структура дифференциального оператора (1.3) определяется его порядком n. Для оператора дифференциального уравнения (1.4) структура задается его порядком n, а параметрами служат величины ai(t), [i = 0, n]. Таким образом, задачу идентификации в общем виде можно ставить как задачу определения оператора объекта, преобразующего входные воздействия в выходные.
3.2 Основные задачи идентификации
Рассмотрим различные постановки задачи идентификации. Как уже отмечалось выше, в общем виде задача идентификации заключается в определении оператора объекта, преобразующего входные воздействия в выходные. В связи с этим выделят задачи структурной и параметрической идентификации.
При структурной идентификации определяют структуру и вид оператора объекта, или другими словами вид математической модели объекта.
После того как математическая модель объекта определена, проводят параметрическую идентификацию, заключающуюся в определении числовых параметров математической модели.
Задачей структурной идентификации является представление реального объекта управления в виде математической модели. Конкретный выбор математической модели зависит от типа объекта.
Для описания больших систем и объектов, таких как социальные, производственные, финансово-экономические, используются семиотические (знаковые) и лингвистические модели, базирующиеся на теории множеств и абстрактной алгебры.
В качестве математических моделей технических систем применяются дифференциальные уравнения в обыкновенных и частных производных. Причем при решении задач управления предпочтение отдается моделям в пространстве состояний и структурированным моделям, описываемым дифференциальными уравнениями в обыкновенных производных.
Задачу параметрической идентификации можно сформулировать следующим образом [29]. Пусть имеется полностью наблюдаемый и полностью управляемый объект, задаваемый уравнениями состояния
, (3.6)
где B - n-мерный вектор -столбец, а C - n-мерный вектор -строка, А - квадратная матрица размером . Элементы этих векторов А В и С неизвестные числа. Целью идентификации является определение этих чисел.
Под идентификацией в дальнейшем будем понимать нахождение параметров моделей объектов, предполагая, что уравнения моделей заранее известны и задаются с помощью обобщенной структурной схемы объекта (рис. 3.2), т.е. будем рассматривать вопросы параметрической идентификации.
Рис. 3.2
На схеме приняты следующие обозначения: u и y - наблюдаемые входной и выходной сигналы;
x - ненаблюдаемая (скрытая) переменная, оцениваемая косвенно по сигналам u и y , получаемым в результате преобразования в системе операторами А В и H;
е1 и е2 - ненаблюдаемые помехи (случайные процессы типа белого шума);
f и v - ненаблюдаемые помехи (коррелированные во времени случайные сигналы, в некоторых случаях содержащие детерминированные составляющие);
A, B, C, E, G, H - операторы, вид которых известен, но неизвестны параметры.
Основными постановками задач идентификации являются: - идентификация, или определение характеристик объекта (по значениям u и y определить операторы А, В ИС);
- генерация случайных сигналов с заданными характеристиками, или определение характеристик сигналов (по значениям f или v определить оператор E или G, H);
наблюдение за скрытыми переменными, или определение переменных состояния (по наблюдаемым u и y, известным операторам A, B, C, E, G, H определить x).
Решение вышеназванных задач идентификации осуществляется методами параметрической и непараметрической идентификации. При использовании методов параметрической идентификации сразу определяются коэффициенты передаточной функции или уравнения объекта. Вторая группа методов используется для определения временных или частотных характеристик объектов, а также характеристик случайных процессов генерируемых объектами. По полученным характеристикам затем определяются передаточная функция или уравнения объекта. В настоящее время более широкое распространение получили методы параметрической идентификации.
3.3 Метод наименьших квадратов
Параметрическая идентификация моделей объектов позволяет сразу находить значения коэффициентов модели объекта по измеряемым значениям управляемого y и управляющего u сигналов объекта. При этом предполагается, что структура и порядок модели объекта уже известен. Измеряемые значения y и u представляются в виде временного ряда, поэтому в результате идентификации оцениваются параметры АРСС - модели объекта, или параметры его дискретной передаточной функции. Зная коэффициенты АРСС - модели и ее структуру можно перейти к непрерывным структурированным моделям и моделям в пространстве состояний, как это делалось в п. 2.4.
В задачах параметрической идентификации используются модели объекта с шумом измерений, задаваемые передаточными функциями и структурой рис. 3.2. Считая порядки моделей заданными, задачей параметрической идентификации стохастической системы считается определение оценок коэффициентов полиномов модели A,B,C и D по результатам измерений входа u(t) и выхода y(t). Свойства получаемых оценок (состоятельность, несмещенность и эффективность) зависят от характеристик внешних возмущений и метода идентификации, при этом существенную роль играет вид закона распределения внешних возмущений.
Важным преимуществом методов параметрической идентификации является возможность использования рекуррентных алгоритмов, позволяющих проводить текущую идентификацию в реальном времени при номинальных режимах работы объекта. Эти преимущества определили широкое использование методов параметрической идентификации в задачах управления и автоматизации. К таким методам относятся: метод наименьших квадратов, метод максимального правдоподобия и метод стохастической аппроксимации .
Подставим в уравнение АРСС - модели значения сигналов y(k) и u(k), а также оценки параметров объекта, полученные после (k - 1) - го такта [32]: . (5.1)
В этом уравнении ноль, стоящий в правой части уравнения (получающийся после переноса всех слагаемых в левую часть) заменен величиной ошибки e(k). Она отражает наличие погрешности измерений выхода и неточность оценок параметров модели ai и bi. Обозначим значение y(k) как значение y(k/k - 1), предсказанное в момент (k - 1) на момент k. Тогда
, (3.6)
Или , (3.8) где - вектор оценок, - вектор данных, d - величина дискретного запаздывания.
Ошибка уравнения e(k) будет иметь вид
, (3.9) где y(k) - новое измерение; y(k/k-1) - предсказанное значение измерения.
Предположим, что измерения выполнены на интервале k = 1, 2, ..., n d N а порядок АРСС - модели (n, n). Тогда на основании (3.8) (5.4)получим векторно-матричное уравнение вида
, (3.10) где - вектор выхода, - матрица данных, - вектор ошибок.
Функция потерь по критерию наименьших квадратов определяется как квадрат ошибки, что в векторном представлении дает
, (3.11) а ее минимум находится из условия
. (3.12)
Полагая, что N і 2n, обозначим
, (3.13) тогда оценка минимизирующая функцию потерь (3.11)будет иметь вид: . (3.14) .
Алгоритм (3.14) - нерекуррентный алгоритм идентификации по методу наименьших квадратов, так как вычисление оценок параметров модели производится лишь после того как сформирован весь массив входных и выходных данных объекта
.
Рекуррентный алгоритм МНК получается после записи новой и старой оценок и вычитания одной из другой:
. (3.15)
Вектор коррекции определяется из соотношения: . (3.16)
Вектор на следующем шаге вычисляется как . (3.17)
Рекуррентный алгоритм метода наименьших квадратов реализуется в следующей последовательности.
1. Задаются начальные значения вектора оценок параметров модели и вектора данных: , где - достаточно большое число, I - единичная матрица соответствующей размерности.
2. Производятся измерения входного и выходного сигналов объекта, и формируется новый вектор данных .
3. Вычисляется вектор коррекции по формуле (3.16)
4. Находится новая оценка параметров по формуле (3.15)
5. Вычисляется новый вектор по формуле (3.16)
Обычно для промышленных объектов характерна коррелированность во времени шумов, действующих на объект. Использование обычного МНК при таком шуме, т. е. при минимизации выражения (3.11), вызывает смещение оценок параметров, увеличение дисперсии этих оценок. Ухудшение этих оценок, в свою очередь, приводит к ухудшению свойств оценок переменных состояния х(k) и в итоге к снижению качества управления.
Для получения несмещенных оценок используется обобщенный МНК (ОМНК).
При использовании ОМНК оцениваются параметры моделей объекта и шума на его выходе. Идентификации подвергается модель максимального правдоподобия (МП - модель) для которой связь между переменными задается уравнением
. (3.18)
Вводя расширенные векторы данных
(3.19) и параметров
, (3.20) выход ной сигнал объекта можно записать через (5.13) и (5.14)
. (3.21)
Так как сигнал помехи е(к) неизвестен, то используется его оценка , определяемая из уравнения
. (3.22)
Оценки параметров МП - модели вычисляются аналогично как в МНК по формулам (3.15) - (3.17).
На рис. 3.3. -3 показаны результаты идентификации.
Рис. 3.3. Коэффициенты АРСС - модели объекта.
Рис. 3.4. Выходные сигналы объекта и модели.
Рис. 3.4. Ошибка идентификации.
Рис. 3.5. Корреляционная функция ошибки идентификации.
Рис. 3.5. Спектральная плотность ошибки идентификации.
Рис. 3.6. Гистограмм ошибки идентификации.
4.
Расчет характеристик математической модели объекта управления
4.1 Математические модели в пространстве состояний
Математическая модель (образ) представляет собой абстрактное отражение реального объекта (оригинала, прообраза). В зависимости от типа объекта и целей, ради которых строится и используется модель, формальное описание может быть различным. Для моделирования объектов могут быть использованы структурные схемы, операторные уравнения, алгебраические уравнения, дифференциальные, интегральные и интегродифференциальные уравнения, Марковские цепи, передаточные функции, частотные характеристики, весовые функции, графы и т. д. Все эти методы функционально связывают входные и выходные сигналы объекта. По количеству входов и выходов объекты и соответствующие им модели разделяют на одномерные и многомерные. Одномерными называют объекты, имеющие один вход и один выход, многомерными - объекты, имеющие несколько входов и выходов, причем число входов не обязательно равно числу выходов. Блок-схемы одномерного и многомерного объектов изображены соответственно на рис. 4.1,а и рис. 4.1,б. Причем число входов не обязательно равно числу выходов.
Рис. 4.1.
Наиболее полно идентифицируемый объект описывается в терминах пространства состояний. Под состоянием объекта понимается совокупность величин xi, полностью определяющих его положение в данный момент времени.
Наиболее употребительной моделью динамических объектов являются дифференциальные уравнения. Будем рассматривать только объекты с сосредоточенными параметрами, которые описываются обыкновенными дифференциальными уравнениями. Порядок системы дифференциальных уравнений, описывающей модель объекта, непосредственно не определяется количеством входов и выходов, а зависит от операторов, преобразующих входные сигналы в выходные.
Для динамических систем, в которых физические процессы протекают непрерывно во времени, скорости изменения переменной состояния объекта можно также задать вектором
, (4.1) где , - скорости изменения компонент многомерной переменной состояния.
В свою очередь эти скорости определяются текущими значениями переменной состояния , управлениями и возмущениями , действующими на объект
, (4.2) где g = (g1, ..., gn)T - вектор функция; x10 , x20. .., xn0 - начальные условия.
Если g( ) - нелинейная функция, то решение уравнения (4.2) усложняется, так как сводится к интегрированию системы нелинейных ДУ. Так как методы интегрирования систем ДУ хорошо разработаны только для линейных систем, то перед работой с ними необходимо линеаризовать g( ) в окрестности рабочей точки, которой соответствует установившейся режим работы объекта.
Для линеаризованной функции g( ) ДУ вида (4.2) с учетом воздействия среды можно представить в векторной форме: , (4.3) где A(t); B(t); E(t) - матрицы преобразования, элементы которых в общем случае являются функциями времени.
Элементы xi в уравнении (4.3) называются переменными состояния объекта или фазовыми координатами. Переменные состояния (фазовые координаты) образуют вектор состояния, переменные управления и возмущения образуют векторы управления и возмущения. Множество этих векторов составляет пространство состояний (фазовое пространство) X, пространство управлений U и возмущений F.
Во многих физических объектах регулируются, измеряются и передаются по информационным каналам не значения вектора состояния , а другие значения - функции составляющих вектора фазовых координат, называемые управляемыми или выходными величинами. Обозначим измеряемые величины через y1(t), y2(t),..., ys(t), причем обычно s Ј n. Тогда уравнение измерения, связывающее регулируемые и фазовые координаты объекта примет вид
. (4.4)
Для линейного объекта это соотношение линейное: . (4.5)
Матрица С(t) называется матрицей измерения. Она показывает, как изменяются значения вектора состояний при измерении. При измерениях, описываемых выражениями (4.4) и (4.5), вектором выходных сигналов (или просто вектором выхода) является вектор . Отметим, что между векторами входа, выхода и состояния существует принципиальное различие. Если все составляющие вектора входа и вектора выхода являются вполне конкретными физическими величинами, то элементами вектора состояния могут быть некоторые абстрактные переменные, физическая природа которых не всегда определена.
Векторно-матричная запись модели линейного динамического объекта с учетом уравнения измерения принимает вид: . (4.6)
Если матрицы A(t), B(t) и C(t) не зависят от времени, то объект называется объектом с постоянными коэффициентами, или стационарным, объектов. В противном случае объект будет нестационарным.
При наличии погрешностей при измерении, выходные (регулируемые) сигналы задаются линеаризованным матричным уравнением: , (4.7)
где - вектор регулируемых (измеряемых) величин; C(t) - матрица связи вектора измерений с вектором состояний; v(t) - вектор ошибок измерений (помехи).
Структура линейной непрерывной системы, реализующая уравнения (4.6) и (2.7) приведена на рис. 4.2.
Рис. 4.2.
Данная структура соответствует математической модели объекта построенной в пространстве состояний его входных x(t), u(t), выходных y(t) и внутренних, или фазовых координат x(t).
4.2 Структурированные модели
Реальные объекты управления представляют собой совокупность отдельных элементов и блоков соединенных между собой посредством связей. Поэтому в практике гораздо удобнее бывает представлять математи
Вывод
Таким образом, подводя итог работе, можно отметить, что в ходе ее выполнения были определены параметры регулирования системы, включающей в себя нелинейный теплоэнергетический объект (котел для подогрева воды). Были достигнуты следующие результаты: 1. По временным трендам с помощью программы Matlab проведена идентификация данного объекта.
2. Построены все необходимые графики.
3. Рассчитаны показатели качества.
Список литературы
1. Математическое моделирование: Методы описания и исследования сложных систем. - М.: Наука, 1989.
2. Методы классической и современной теории автоматического управления: Учебник в 3-х т. Т1: Синтез регуляторов и теория оптимизации систем автоматического управления / под ред Н.Д. Егупова. - М.: Изд-во МГТУ им Баумана, 2000. - 736 с.
3. Советов Б.Я., Яковлев С.А. Моделирование систем. - М.: Высшая школа. 1988 (Дополнительная).
4. Александров А.Г. Оптимальные и адаптивные системы. - М: Высшая школа . 1986.
5. Изерман Р. Цифровые системы управления / Пер. с англ. - М.: Мир, 1984. - 541 с.
6. Кашьян Р. Л., Рао А. Р. Построение динамических стохастических моделей по экспериментальным данным. - М: Мир, 1983. 384 с.
7. Ивахненко А. Г., Юрачковский Ю. Г. Моделирование сложных систем по экспериментальным данным. - М.: Радио и связь, 1987. - 120 с.
8. Кендал М. Временные ряды. - М.: Радио и связь, 1981. - 198 с.