Разработка программы, которая вычисляет определенный интеграл методом трапеций для подынтегральной функции и моделирует задачу вынужденных колебаний без затухания. Описание интерфейса программы в среде Delphi. Решение задачи с помощью пакета MathCAD.
Аннотация к работе
В наши дни невозможно представить жизнь без компьютера, особенно если это связано с работой на некотором предприятии. Невозможно представить сейчас производственную, учебную деятельность и в общем жизнь людей без компьютерных систем и технологий. С каждым днем повышаются требования к уровню подготовки молодых специалистов в этой сфере деятельности. Целью работы является разработка программы вычисляющей определенный интеграл методом трапеций для подынтегральной функции и моделирует задачу вынужденных колебаний без затухания . Для достижения цели выполнения курсовой работы, необходимо решить следующие задачи: · произвести формулировку задачи с конкретными данными;Среда Delphi включает в себя полный набор визуальных инструментов для скоростной разработки приложений (RAD - rapid application development), поддерживающей разработку пользовательского интерфейса и подключение к корпоративным базам данных. VCL - библиотека визуальных компонент, включает в себя стандартные объекты построения пользовательского интерфейса, объекты управления данными, графические объекты, объекты мультимедиа, диалоги и объекты управления файлами, управление DDE и OLE. Среда Delphi является очень удобной при решении различного рода задач, так как позволяет находить коэффициенты аппроксимирующих полиномов (многочленов) для табулированной функции, и создать удобный для пользователя интерфейс.На практике наибольшее распространение получил метод 4-го порядка точности. Значение функции в i 1-й точке вычисляется следующим образом: (1.4) Метод Рунге-Кутта обладает достаточно высокой точностью, легко программируется, так как для вычисления нужно знать лишь одно значение yi. Метод Рунге-Кутта имеет порядок точности, сопоставимый со значением шага, взятым в 4-й степени. Для оценки погрешности метода пользуются формулой Рунге: Аппроксимация функций методом наименьших квадратов.Рисунок 1.1 - Блок-схема метода Рунге-КуттаФорма имеет три вкладки Page Control. Первая вкладка имеет название “Задание 1” на ней находятся кнопки “Выйти”, “Сохранить график”, “Вычислить”, “Очистить”.Перечень использованных в программе идентификаторов находится в таблице (Таблица 1.1). Идентификаторы p3, p6, p7 массивы для хранения коэффициентов полинома x, f массивы для хранения значений x,y A массив для хранения вычисленных коэф. полиномаТексты основных модулей приведены в приложении А.Рисунок 2.2 - Графическое представление результатовРисунок 2.5 - Решение поставленной задачи средствами MATHCADПеречень использованных в программе идентификаторов (Таблица 2.1). Таблица 2.1 - Перечень использованных в программе идентификаторовПри решении задач применено два различных средства программирования - среда DELPHI и MATHCAD . MATHCAD является достаточно распространенным продуктом, что привело к его частому применению, в том числе и для решения задач отображения графической информации в виде различных графиков. Выполнение той же задачи с помощью DELPHI требует гораздо больше времени, более глубоких знаний в области программировании навыков их применения.begin x0:=strtofloat(form3.edit1.text); xn:=strtofloat(form3.edit2.text); y0:=strtofloat(form3.edit3.text); k:=strtofloat(form3.edit4.text); begin x0:=strtofloat(form3.edit1.text);Рисунок 1.
План
СОДЕРЖАНИЕ
Введение
1. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ
1.1 Обзор программных средств
1.2 Математическая модель
1.3 Блок-схема алгоритма решения поставленной задачи
2. ПРАКТИЧЕСКАЯ ЧАСТЬ
2.1 Решение поставленной задачи в Delphi
2.1.1 Описание интерфейса программы в среде Delphi
2.1.2 Перечень использованных в программе идентификаторов
2.1.3 Тексты основных модулей и вид форм приложения
2.1.4 Графическое представление результатов
2.2 Решение поставленной задачи средствами MATHCAD
2.2.1 Перечень использованных в программе идентификаторов
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
ПРИЛОЖЕНИЯ
Введение
В наши дни невозможно представить жизнь без компьютера, особенно если это связано с работой на некотором предприятии. Невозможно представить сейчас производственную, учебную деятельность и в общем жизнь людей без компьютерных систем и технологий. Математические и научно-технические расчеты являются важной сферой применения персональных компьютеров. Часто они выполняются с помощью программ, написанных на языке высокого уровня. С каждым днем повышаются требования к уровню подготовки молодых специалистов в этой сфере деятельности. Для этого изучаются языки программирования и многочисленные, подчас весьма тонкие капризные численные методы математических расчетов [1]. Выполненная курсовая работа является показателем того, чем студент занимался все время учебы.
Целью работы является разработка программы вычисляющей определенный интеграл методом трапеций для подынтегральной функции и моделирует задачу вынужденных колебаний без затухания .
В данном проекте для получения решения поставленных задач используются такие пакеты, как Delphi, Mathcad. Для достижения цели выполнения курсовой работы, необходимо решить следующие задачи: · произвести формулировку задачи с конкретными данными;
· провести предварительный анализ задачи, описать математический аппарат, который будет использоваться для ее решения;
· в соответствии с определенным заданием разработать алгоритм решения задачи;
· разработать программу в среде Delphi, реализующую построенный алгоритм;
· решить задачу с помощью интегрированного пакета MATHCAD;
· провести анализ полученных результатов;
· сделать общие выводы.
Предметом исследования являются методы решений определенных интегралов, и дифференциальных уравнений.
Данное исследование имеет научную и практическую значимость. Использование данных программ дает возможность инженерам, физикам, простым пользователям, значительно быстрее и менее трудоемко выполнить расчеты. Собранный материал может быть использован в курсе «Информатика» - в этом и заключается практическая значимость данного исследования.
Вывод
интеграл колебание интерфейс затухание
При решении задач применено два различных средства программирования - среда DELPHI и MATHCAD . Это позволяет сравнить их в конкретной ситуации и оценить их достоинства и недостатки.
MATHCAD является достаточно распространенным продуктом, что привело к его частому применению, в том числе и для решения задач отображения графической информации в виде различных графиков. Выполнение той же задачи с помощью DELPHI требует гораздо больше времени, более глубоких знаний в области программировании навыков их применения. Возможно, MATHCAD позволяет решать подобные задания даже быстрее, чем среда DELPHI, но она является очень гибкой и универсальной, а для неопытных пользователей это составляет определенные трудности.
В результате курсовой работы был разработан алгоритм решения поставленной задачи, точно такая же задача была решена в среде MATHCAD.
Полученный алгоритм имеет практическое значение, т.к. задача решается в многих сферах деятельности человека таких как научные исследования, прогнозирование погоды, математические расчеты и т.д.
Опыт, который получен при выполнении курсовой работы позволит сделать правильный выбор при выборе средства для решении подобных задач в практике и целесообразности их применения.
Список литературы
1. Культин Н.Б. Основы программирования в Delphi 7. - СПБ.: БХВ.- Петербург, 2003.
2. Delphi для «чайников». Нейл Дж. Рубенкинг. Киев - Москва: Диалектика, 1997.
3. Наранович О.И.,Скобля С.Г. Информатика: методические указания и задания к лабораторным работам для студентов 2-го курса дневной формы обучения специальностей 40 01 02, 36 01 03, 36 01 01. Часть 3. -Барановичи: БАРГУ, 2005.
4. Наранович О.И., Скобля С.Г. Информатика: задания и методические указания по выполнению, оформлению и защите курсовых работ для студентов дневной и заочной форм обученияспециальностей 1-36 01 01, 1-36 01 03, 1-53 01 01 Часть 4. -Барановичи: БАРГУ, 2005.
5. Фаронов В.В.Delphi. Программирование на языке высокого уровня: Учебник для ВУЗОВ. - СПБ.: Питер, 2005.