Изучение общих принципов построения пропорционально-интегрально-дифференциальных технологических регуляторов. Проектирование алгоритма регуляторов температуры на базе дешевых микроконтроллеров MSP430 (Texas Instruments). Дискретная форма регулятора.
Аннотация к работе
Управление технологическими процессами с помощью регуляторов, работающих по пропорционально-интегрально-дифференциальному закону (ПИД-регуляторов), позволяет поддерживать требуемую технологическую величину с достаточно высокой точностью и приемлемой помехоустойчивостью к внешним возмущающим воздействиям. Современные ПИД-регуляторы реализуются как в виде программного модуля SCADA-системы исполняемой на автоматизированном рабочем месте (АРМ) или программируемом логическом контроллере (ПЛК), так и в виде отдельных технологических регуляторов расположенных на местных и центральных шкафах управления. В качестве базовых элементов обработки информации и управления часто используются микропроцессоры с ограниченными функциональными возможностями, в связи с чем возникает проблема нехватки аппаратных ресурсов и удорожания системы.Для практического воплощения необходимо учесть особенности, порождаемые реальными условиями применения и технической реализации. К таким особенностям относятся: - конечный динамический диапазон изменений физических переменных в системе (например, ограниченная мощность нагревателя, ограниченная пропускная способность клапана); не всегда существующая возможность изменения знака управляющего воздействия (например, в системе поддержания температуры часто отсутствует холодильник, двигатель может не иметь реверсивного хода, далеко не каждый самолет имеет систему отрицательной тяги);Суть ее заключается в том, что производная вычисляется обычно как разность двух близких по величине переменных, поэтому относительная погрешность производной всегда оказывается больше, чем относительная погрешность численного представления дифференцируемой переменной. Иначе говоря, дифференциатор усиливает высокочастотные помехи, короткие выбросы и шум. Если помехи, усиленные дифференциатором, лежат за границей диапазона рабочих частот ПИД-регулятора, то их можно ослабить с помощью фильтра верхних частот. , то есть передаточная функция полученного дифференциатора D(s) может быть представлена в виде произведения передаточной функции идеального дифференциатора и передаточной функции фильтра первого порядка: , где коэффициент N задает граничную частоту фильтра и обычно выбирается равным 2…20; Большее ослабление высокочастотных шумов можно получить с помощью отдельного фильтра, который включается последовательно с ПИД-регулятором.Контур регулирования в системе, находящейся в насыщении (когда переменная достигла ограничения), оказывается разомкнутым, поскольку при изменении переменной на входе звена с ограничением его выходная переменная остается без изменений. Наиболее типовым проявлением режима ограничения является так называемое «интегральное насыщение», которое возникает в процессе выхода системы на режим в регуляторах с ненулевой постоянной интегрирования Ti ? 0. Аналогичный эффект возникает вследствие ограничения пропорционального и интегрального члена ПИД-регулятора (рисунки 4 и 5). Суть проблемы интегрального насыщения состоит в том, что если сигнал на входе объекта управления u(t) вошел в зону насыщения (ограничения), а сигнал рассогласования r(t) - y(t) не равен нулю, интегратор продолжает интегрировать, то есть сигнал на его выходе растет, но этот сигнал не участвует в процессе регулирования и не воздействует на объект вследствие эффекта насыщения. Для тепловых систем ограничением снизу обычно является нулевая мощность нагрева, в то время как ПИД-регулятор требует подачи на объект «отрицательной мощности нагрева», то есть охлаждения объекта.При анализе устойчивости ПИД-регуляторов обычно ограничиваются исследованием реакции системы на ступенчатое изменение уставки r(t), шум измерений n(t) и внешние возмущения d(t). В производственных условиях попытки добиться устойчивости системы с ПИД-регулятором опытным путем, без ее идентификации, не всегда приводят к успеху (в первую очередь это касается систем с объектом высокого порядка или с объектами, которые трудно идентифицировать, а также систем с большой транспортной задержкой). Практически интерес представляет анализ запаса устойчивости, то есть определение численных значений критериев, которые позволяют указать, как далеко находится система от состояния неустойчивости. Поэтому далее мы проанализируем функцию чувствительности системы с ПИД-регулятором, позволяющую выявить условия, при которых система становится грубой (малочувствительной к изменению ее параметров). Тогда, пройдя через регулятор и объект управления, этот сигнал появится на выходе y с измененной амплитудой и фазой в виде: y(t) = - |G( j?0 )|sin(?0t ? ), (4) где G(j?) = R(j?)P(j?) - комплексная частотная характеристика (КЧХ) системы, ? = arg(G(j?0)) - аргумент КЧХ, |G(j?0)| - модуль КЧХ на частоте ?0.Передаточная функция реального объекта P(s) может изменяться в процессе функционирования на величину ?P(s),например, вследствие изменения нагрузки на валу двигателя, числа яиц в инкубаторе, уровня или состава жидкости в автоклаве, вследствие старения и износа материала, появления люфта, изменения смазки и т