Автоматизация производственных процессов на основе внедрения роботизированных технологических комплексов и гибких модулей. Технологический маршрут обработки детали, элементы режимов резания, нормирование операций, расчет привода крана-штабелера.
Аннотация к работе
Автоматизация производственных процессов на основе внедрения роботизированных технологических комплексов и гибких производственных модулей, вспомогательного оборудования, транспортно-накопительных и контрольно-измерительных устройств, объединенных в гибкие производственные системы, управляемые от ЭВМ, является одной из стратегий ускорения научно-технического прогресса в машиностроении. Применение гибких производственных систем и роботизированных технологических комплексов обеспечивает: - увеличение уровня технической вооруженности производства за счет автоматизации практически всех основных и вспомогательных и вспомогательных операций; решение проблемы сокращения дефицита рабочих, выполняющих как основные, так и вспомогательные операции;Разбивка на операции осуществляется так, чтобы количество оборудования было наименьшим и станки загружены равномерно, достигалась необходимая производительность участка. Технологический маршрут обработки детали представлен в таблице 1. Операция Установ Позиция Переходы Ниже представлена модель содержания рассматриваемого технологического процесса (по операции 1.1. Смена положения рев.головки (резец проходной) Смена положения рев.головки (резец проходной) Смена положения рев.головки (резец проходной) Смена положения рев.головки (сверло центровочное) Смена положения рев.головки (сверло спиральное) Поворот заготовки на 180° Смена положения рев.головки (метчик) Поворот заготовки на 180° Отвод инструментаПри назначении элементов режимов резания учитывают характер обработки, тип и размеры инструмента, материал его режущей части, материал и состояние заготовки, тип и состояние оборудования. Элементы режимов резания: Глубина резания t: при черновой обработке назначают по возможности максимальную t, равную всему припуску на обработку или большей его части (75%); при чистовой обработке - в зависимости от требований точности размеров и шероховатости обработанной поверхности. Подача s: при черновой обработке выбирают максимально возможную подачу, исходя из жесткости и прочности системы СПИД, мощности привода станка, прочности твердосплавной пластинки и других ограничивающих факторов; при чистовой обработке - в зависимости от требуемой степени точности и шероховатости обработанной поверхности. Скорость резания v рассчитывают по формуле, установленной для каждого вида обработки, которая имеет общий вид: (2) где: Vтабл - табличное значение скорости резания; Ki - поправочные коэффициенты на скорость резания в зависимости от предела прочности sв или твердости НВ обрабатываемого материала, от состояния обрабатываемой поверхности П, от периода стойкости Т, от главного угла в плане j, от марки твердого сплава ТС, от формы заточки инструмента, от глубины обработки Н, от ширины обработки В, от жесткости инструмента.Штучное время обработки детали: , мин (6) где Тао - время автоматической обработки, состоит из времени на совершение инструментом холостых и рабочих ходов: (7) Вспомогательное время, включающее Тв.у. на установку и снятие заготовки и машинно-вспомогательное время Тм.в., включает комплекс приемов, связанных с позиционированием, ускоренным перемещением рабочих органов станка, подводом инструмента вдоль оси в зону обработки и последующим отводом, автоматической смены режущего инструмента путем поворота револьверной головки (резцодержателя) или из инструментального магазина. Время обслуживания рабочего места и время на личные потребности, назначается в процентах от оперативного времени Подготовительно-заключительное время Тп-з при обработке на станках с ЧПУ состоит из затрат времени Тп-з1 из затрат Тп-з2, учитывающих дополнительные работы, и времени Тп-з3 на пробную обработку детали: , (14) В затраты Тп-з1 включено время на получение наряда, чертежа, технологический документации на рабочем месте в начале работы и на сдачу в конце смены.Выбор автоматизированного металлорежущего оборудования определяется конструктивно-технологическими особенностями обрабатываемых изделий, режимами резания. Выбор оборудования для токарной операции осуществляется по следующим признакам: частота вращения, наибольший диаметр обрабатываемой заготовки, мощность электропривода главного движения, скорость быстрого перемещения, подача суппорта, наибольшее перемещение суппорта, шаг нарезаемой резьбы. Для токарной операции выбираем токарно-фрезерный обрабатывающий центр с ЧПУ мод. 1730Ф6, предназначенный для комплексной обработки деталей типа тел вращения § растачивания, сверления, развертывание отверстий соосных оси шпинделя, а также радиальных, тангенциальных и расположенных под углом;К таким работам относятся перемещение заготовки от одного станка к другому, к конвейеру, межоперационного накопления заготовок, транспортировка заготовок и готовых деталей. Выбор промышленного робота производится по количеству степеней подвижности, грузоподъемности, типу привода, быстродействию. Выбираем промышленный робот напольного типа мод. Робот М20П.40.01 предназначен для автоматизации установки - снятия заготовок и других вспомога
План
Содержание
1. Разработка планировки участка.
1.1 Расчет режимов резания.
1.2 Технологическое нормирование операций.
1.3 Выбор количества станков.
1.4 Выбор основного оборудования.
1.5 Выбор вспомогательного оборудования.
1.6 Разработка участка.
2.Разработка циклограммы.
2.1 Описание датчиков.
2.2 Описание циклограммы.
3. Разработка наладки.
4. Разработка привода крана-штабелера.
4.1 Расчет привода выбранного крана-штабелера.
Заключение.
Список используемой литературы.
Введение
Автоматизация производственных процессов на основе внедрения роботизированных технологических комплексов и гибких производственных модулей, вспомогательного оборудования, транспортно-накопительных и контрольно-измерительных устройств, объединенных в гибкие производственные системы, управляемые от ЭВМ, является одной из стратегий ускорения научно-технического прогресса в машиностроении.
Применение гибких производственных систем и роботизированных технологических комплексов обеспечивает: - увеличение уровня технической вооруженности производства за счет автоматизации практически всех основных и вспомогательных и вспомогательных операций;
- повышение производительности труда;
- решение проблемы сокращения дефицита рабочих, выполняющих как основные, так и вспомогательные операции;
- изменение условий и характера труда за счет увеличения доли умственного и сведения к минимуму физического труда.
Курсовое проектирование является составной частью курса автоматизации производственных процессов. Целью проектирования является закрепление, углубление и обобщение знаний, но, главным образом, приобретение практических навыков решения различных задач по автоматизации производственных процессов. При этом студент должен научиться пользоваться справочной и нормативной литературой, государственными и отраслевыми стандартами, нормалями, каталогами и другими материалами информационного характера, необходимыми для выполнения проекта.
Эта самостоятельная работа студентов является наиболее важным этапом подготовки к дипломному проектированию и в значительной степени определяет формирование технологической направленности будущих инженеров.
В курсовом проекте необходимо разработать гибкий автоматический участок для выпуска детали «вал», технологический процесс, для которой был разработан в ходе выполнения курсового проекта по дисциплине «Технологические процессы».