Раціональні дроби та їх властивості - Контрольная работа

бесплатно 0
4.5 66
Дріб, числівник і знаменник якого є многочленами, називається раціональним (алгебраїчним). Приведення раціональних дробів до спільного знаменника. Скоротити дріб - це означає розділити числівник і знаменник дробу на спільний множник.


Аннотация к работе
Дріб, числівник і знаменник якого є многочленами, називається раціональним (алгебраїчним). Наприклад, (ОПЗ) алебраїчного дробу є множина всіх числових наборів, відповідаючих її буковному наборові (a,b,c) таких що Два раціональні дроби та тотожньо рівні на множині М, якщо на множині М справедлива рівність PB=QA, за умови, що многочлени Q та B не дорівнюють нулю. Спільним знаменником декілька раціональних дробів називається цілий раціональний вираз, який ділиться на знаменник кожного дробу. Сума двох (любої скінченної кількості) раціональних дробів з однаковими знаменниками дорівнює дробу з тим же знаменником і з числівником, що дорівнює сумі числівників дробів-доданків: . Частка від ділення двох раціональних дробів тотожньо дорівнює дробу, числівник якого дорівнює добутку числівника першого дробу на знаменник другого дробу, а знаменник - добутку знаменника першого дробу на числівник другого дробу: .

Список литературы
1. М.Я. Выгодский, „Справочник по элементарной математике”, Москва, 1949

2. В.В. Вавилов, И.И. Мельников, „Задачи по математике. Алгебра”, Москва, 1987
Заказать написание новой работы



Дисциплины научных работ



Хотите, перезвоним вам?