Распределение Пуассона - Курсовая работа

бесплатно 0
4.5 43
Числовые характеристики положения о распределении Пуассона и разброса. Асимметрия и эксцесс распределения Пуассона, его дополнительные характеристики, точечная и интервальная оценка параметра. Пример условия, при котором возникает распределение Пуассона.


Аннотация к работе
История теории вероятности восходит к XVII веку, когда были предприняты первые попытки систематического исследования задач, относящихся к массовым случайным явлениям, и появился соответствующий математический аппарат. Среди них нельзя не обратить внимание на труды Симеона Дени Пуассона ((1781-1840) - французский математик), доказавшего более общую, чем у Якова Бернулли, форму закона больших чисел, а также впервые применившего теорию вероятностей к задачам стрельбы. А испытания производятся в стационарных условиях, то для описания распределения такой случайной величины обычно используют закон Пуассона (данное распределение впервые предложено и опубликовано этим ученым в 1837 г.). Этот закон можно также описывать как предельный случай биноминального распределения, когда вероятность p осуществления интересующего нас события в единичном эксперименте очень мала, но число экспериментов m, производимых в единицу времени, достаточно велико, а именно такое, что в процессе p 0 и m произведение mp стремится к некоторой положительной постоянной величине (т.е. mp ). Из математики известна формула, позволяющая примерно подсчитать значение любого члена биномиального распределения: где a = n · p - параметр Пуассона (математическое ожидание), а дисперсия равна математическому ожиданию.Дисперсией случайной величины Х называют математической ожидание квадрата отклонения случайной величины от ее математического ожидания: Однако, удобнее ее вычислять по формуле: Поэтому найдем сначала второй начальный момент величины Х: По ранее доказанному кроме того, следовательно, Таким образом, дисперсия случайной величины, распределенной по закону Пуассона, равна ее математическому ожиданию а. Это свойство распределения Пуассона часто применяют на практике для решения вопроса, правдоподобна ли гипотеза о том, что случайная величина распределена по закону Пуассона. Для случайной величины Х, распределенной по закону Пуассона, найдем вероятность того, что она примет значение не меньшее заданного k. Вероятность попадания на малый участок ?х двух или более точек пренебрежимо мала по сравнению с вероятностью попадания одной точки (это условие означает практическую невозможность совпадения двух или более точек). Величина R1 (вероятность того, что величина Х примет положительное значение) в данном случае выражает вероятность того, что на отрезок l попадет хотя бы одна точка: R1=1-e-a.

Введение
Теория вероятностей - это математическая наука, изучающая закономерности в случайных явлениях. На сегодняшний день это полноценная наука, имеющая большое практическое значение.

История теории вероятности восходит к XVII веку, когда были предприняты первые попытки систематического исследования задач, относящихся к массовым случайным явлениям, и появился соответствующий математический аппарат. С тех пор, многие основы были разработаны и углублены до нынешних понятий, были открыты другие важные законы и закономерности. Множество ученых работало и работает над проблемами теории вероятностей.

Среди них нельзя не обратить внимание на труды Симеона Дени Пуассона ((1781-1840) - французский математик), доказавшего более общую, чем у Якова Бернулли, форму закона больших чисел, а также впервые применившего теорию вероятностей к задачам стрельбы. С именем Пуассона связан один из законов распределения, играющий большую роль в теории вероятностей и ее приложениях.

Число наступлений определенного случайного события за единицу времени, когда факт наступления этого события в данном эксперименте не зависят от того, сколько раз и в какие моменты времени оно осуществлялось в прошлом, и не влияет на будущее. А испытания производятся в стационарных условиях, то для описания распределения такой случайной величины обычно используют закон Пуассона (данное распределение впервые предложено и опубликовано этим ученым в 1837 г.).

Этот закон можно также описывать как предельный случай биноминального распределения, когда вероятность p осуществления интересующего нас события в единичном эксперименте очень мала, но число экспериментов m, производимых в единицу времени, достаточно велико, а именно такое, что в процессе p 0 и m произведение mp стремится к некоторой положительной постоянной величине (т.е. mp ).

Поэтому закон Пуассона часто называют также законом редких событий.

Распределение Пуассона в теории вероятностей

Функция и ряд распределения

Распределение Пуассона - это частный случай биномиального распределения (при n >> 0 и при p -> 0 (редкие события)).

Из математики известна формула, позволяющая примерно подсчитать значение любого члена биномиального распределения:

где a = n · p - параметр Пуассона (математическое ожидание), а дисперсия равна математическому ожиданию. Приведем математические выкладки, поясняющие этот переход. Биномиальный закон распределения

Pm = Cnm · pm · (1 - p)n - m может быть написан, если положить p = a/n, в виде или

Так как p очень мало, то следует принимать во внимание только числа m, малые по сравнению с n. Произведение

весьма близко к единице. Это же относится к величине очень близка к e-a. Отсюда получаем формулу:

число Эйлера (2,71…).

,

Для производящей функции величины имеем:

Интегральная функция вероятности распределения равна

Классическим примером случайной величины, распределенной по Пуассону, является количество машин, проезжающих через какой-либо участок дороги за заданный период времен. Также можно отметить такие примеры, как количество звезд на участке неба заданной величины, количество ошибок в тексте заданной длины, количество телефонных звонков в call-центре или количество обращений к веб-серверу за заданный период времени.

Ряд распределения случайной величины Х, распределенной по закону Пуассона, выглядит следующим образом: хм 0 1 2 … m …

Pm e-a … …

На рис. 1 представлены многоугольники распределения случайной величины Х по закону Пуассона, соответствующие различным значениям параметра а.

Для начала убедимся, что последовательность вероятностей, может представлять собой ряд распределения, т.е. что сумма всех вероятностей Рм равна единице.

Используем разложение функции ех в ряд Маклорена:

Известно, что этот ряд сходится при любом значении х, поэтому, взяв х=а, получим следовательно

Числовые характеристики положения о распределении Пуассона

Математическим ожиданием дискретной случайной величины называют сумму произведений всех ее возможных значений на их вероятности.

По определению, когда дискретная случайная величина принимает счетное множество значений:

Первый член суммы (соответствующий m=0) равен нулю, следовательно, суммирование можно начинать с m=1:

Таким образом, параметр а представляет собой не что иное, как математическое ожидание случайной величины Х.

Кроме математического ожидания, положение случайной величины характеризуется модой и медианой.

Модой случайной величины называется ее наиболее вероятное значение.

Для непрерывной величины модой называется точкой локального максимума функции плотности распределения вероятностей. Если многоугольник или кривая распределения имеют один максимум (рис. 2 а), то распределение называется унимодальным, при наличии более одного максимума - мультимодальным (в частности, распределение, имеющее две моды, называется бимодальным). Распределение, имеющее минимум, называется антимодальным (рис. 2 б)

F(x) Pi xmod x 0 x1 x2 x3 x4 x

Наивероятнейшим значением случайной величины называется мода, доставляющая глобальный максимум вероятности для дискретной случайной величины или плотности распределения для непрерывной случайной величины.

Медиана - это такое значение xl, которое делит площадь под графиком плотности вероятности пополам, т.е. медиана является любым корнем уравнения. Математическое ожидание может не существовать, а медиана существует всегда и может быть неоднозначно определенной.

Медианой случайной величины называется такое ее значение

= x med, что P ( x med) = .

Список литературы
1. Н.Ш. Кремер «Теория вероятностей и математическая статистика»: Учеб. пособие. М., 2004.

2. С.А. Айвазян, В.С. Мхитарян «Теория вероятностей и прикладная статистика»: Учеб. пособие. М., 2001.

3. Е.С. Кочетков «Теория вероятностей и математическая статистика»: Учеб. пособие. М., 2001.

4. В.А. Фигурин «Теория вероятности и математическая статистика»: Учеб. пособие. - Мн. ООО «Новое знание», 2000.

5. Л.П. Трошин «Теория вероятностей», МЭСИ. М.: 2004.

6. В.Е. Гмурман «Теория вероятностей и математическая статистика». Учеб. пособие. М.: высшее образование, 2006.
Заказать написание новой работы



Дисциплины научных работ



Хотите, перезвоним вам?