Процесс концентрирования жидких растворов практически нелетучих веществ путем частичного удаления растворителя испарением при кипении жидкости. Определение температур кипения растворов и тепловых нагрузок. Распределение полезной разности температур.
Аннотация к работе
раствор жидкость кипение температура В данной курсовой работе произведен расчет выпарной установки для концентрирования водного раствора NACL от начальной концентрации хн = 6 % до конечной хк = 26%, согласно расчетам выбран выпарной аппарат, выполнены 2 графические работы. Основные условные обозначения с - теплоемкость, Дж/(кг · К); D - расход греющего пара, кг/с; g - ускорение свободного падения, м/с2;Выпариванием называют процесс концентрирования жидких растворов практически нелетучих веществ путем частичного удаления растворителя испарением при кипении жидкости. В процессе выпаривания растворитель удаляется из всего объема раствора, в то время как при температурах ниже температур кипения испарение происходит только с поверхности жидкости. В химической промышленности выпариванию подвергают растворы твердых веществ (главным образом водные растворы щелочей, солей и др.), а также растворы высококипящих жидкостей, обладающих при температуре выпаривания очень малым Давлением пара (некоторые минеральные и органические кислоты, многоатомные спирты и др.). Выпаривание иногда применяют также для выделения растворителя в чистом виде: при опреснении морской воды выпариванием образующийся из нее водяной пар Конденсируют и полученную воду используют для питьевых или технических целей. Однако в подавляющем большинстве случаев в качестве греющего агента при выпаривании используют водяной пар, который называют греющим, или первичным.Разнообразные конструкции выпарных аппаратов, применяемые в промышленности, можно классифицировать по типу поверхности нагрева (паровые рубашки, змеевики, трубчатки различных видов) и по ее расположению в пространстве (аппараты с вертикальной, горизонтальной, иногда с наклонной нагревательной" камерой), по роду теплоносителя (водяной пар, высокотемпературные теплоносители, электрический ток и др.). а также в зависимости от того, движется ли теплоноситель снаружи или внутри труб нагревательной камеры. Однако более существенным признаком классификации выпарных аппаратов, характеризующим интенсивность их действия, следует считать вид и кратность циркуляции раствора. Различают выпарные аппараты с неорганизованной, или свободной, направленной естественной и принудительной циркуляцией раствора. Выпарные аппараты делят также на аппараты прямоточные, в которых выпаривание раствора происходит за один его проход через аппарат без циркуляции раствора, и аппараты, работающие с много - кратной циркуляцией раствора. Рисунок 1 Выпарной аппарат с горизонтальной трубчатой нагревательной камерой и вертикальным цилиндрическим корпусом: 1 - корпус; 2-нагревательная камера; 3 - сепараторВ приведенном ниже типовом примере расчета трехкорпусной установки, состоящей из выпарных аппаратов с естественной циркуляцией (с соосной греющей камерой) и кипением раствора в трубах, даны также рекомендации по расчету выпарных аппаратов некоторых других типов: с принудительной циркуляцией, вынесенной зоной кипения, пленочных. Исходный разбавленный раствор из промежуточной емкости / центробежным насосом 2 подается в теплообменник 3 (где подогревается до температуры, близкой к температуре кипения), а затем - в первый корпус 4 выпарной установки. Вторичный пар, образующийся при концентрировании раствора в первом корпусе, направляется в качестве греющего во второй корпус 5. Аналогично третий корпус 6 обогревается вторичным паром второго и в нем производится концентрирование раствора, поступившего и второго корпуса. Самопроизвольный переток раствора и вторичного пара в последующие корпуса возможен благодаря общему перепаду давлений, возникающему в результате создания вакуума конденсацией вторичного пара последнего корпуса в барометрическом конденсаторе смешения 7 (где заданное давление поддерживается подачей охлаждающей воды и отсосом неконденсирующихся газов вакуум-насосом 18).Распределение концентраций раствора по корпусам установки зависит от соотношения нагрузок по выпариваемой воде в каждом аппарате. В первом приближении на основании практических данных принимают, что производительность по выпариваемой воде распределяется между корпусами в соответствии с соотношением: ?1: ?2: ?3 = 1,0: 1,1: 1,2 Далее рассчитывают концентрации растворов в корпусах: = 0,078 (7,8 %)Тогда давления греющих паров в корпусах (в МПА) равны Поэтому Концентрацию кипящего раствора принимают равной Конечной в данном корпусе и, следовательно, температуру кипения раствора определяют при Конечной Концентрации. Таким образом, температура кипения раствора в корпусе отличается от температуры греющего пара в последующем корпусе на сумму температурных потерь от температурной (), гидростатической () и гидродинамической () депрессий. Гидродинамическая депрессия обусловлена потерей давления пара на преодоление гидравлических сопротивлений трубопроводов при переходе из корпуса в корпус.