Расчет траектории полета двухступенчатой баллистической ракеты - Курсовая работа

бесплатно 0
4.5 119
Расчёт активного, баллистического (эллиптического) и конечного (атмосферного) участков траектории. Программа движения ракеты на участке. Коэффициенты перегрузок, действующих на баллистическую ракету в полёте. Упрощенная блок схема решения задачи.


Аннотация к работе
Расчет активного участка траектории Коэффициенты перегрузок, действующих на ракету в полете.

План
Содержание пояснительной записки(перечень подлежащих разработке разделов)

Краткая теория вопроса расчета траектории баллистической ракеты с ЖРД с поясняющими рисунками и основными расчетными зависимостями. Блок- схема расчета задачи на ЭВМ. Дальность и время полета ракеты на эллиптическом участке траектории. Полная дальность и суммарное время полета ракеты. Распечатка результатов расчета.

Перечень графического материала(с указанием обязательных чертежей)

1.Графики траектории - 2л.(формат А3): а)совмещенный график зависимости угла атаки, угла траектории, программного угла траектории, скорости, скоростного напора и продольной перегрузки от времени полета для активного участка; б)совмещенный график зависимости скорости, скоростного напора и продольной перегрузки от времени полета для конечного участка траектории.

Основная рекомендуемая литература

1.Расчет траектории баллистических ракет: Метод. указания к курсовой работе для специальностей : 130600 - Ракетостроение, 130400 - Ракетные двигатели/ Сост.: И.Н. Гречух, Л.И. Гречух; ОМГТУ. - Омск: Издательство ОМГТУ, 2001 г. - 27 с.

2.Феодосьев В.И. Основы техники ракетного полета. - М., Наука, 1981.-496 с.

Дата выдачи задания "25" октября 2011г.

Руководитель________Гречух И.Н., к.т.н., доцент кафедры "АВИРС" ОМГТУ

Задание принял к исполнению студент________ Мусонов И.Д.

Содержание

Введение
1. Расчет активного участка траектории

2. Программа движения ракеты на АУТ

3. Расчет баллистического (эллиптического) участка траектории

4. Расчет конечного (атмосферного) участка траектории

5. Коэффициенты перегрузок, действующих на ракету в полете

6. Упрощенная блок схема решения задачи на ЭВМ

7. Расчет траектории управляемой БР

8. Расчет участка снижения

Список литературы
Исходные данные ступень

1 2

Диаметр ступеней м 1,85

Масса ступеней: кг 26350 9935

Масса топлива: кг 24010 9032

Расход топлива: кг/с 240,8 51,3

Удельный импульс маршевых двигателей в пустоте: м/с 3142 3292

Масса головной части кг 2100

Масса спускаемого аппарата кг 735

Диаметр спускаемого аппарата м 0,8

Введение

Баллистические ракеты (БР) дальнего действия и ракеты-носители (РН) космических аппаратов (КА) стартуют вертикально. Вертикальный старт не только обладает рядом преимуществ перед наклонным, но и является единственно возможным для данного класса ракет. Тонкостенная конструкция ракеты не способна противостоять боковым нагрузкам при движении и сходе ракеты с направляющих, а пусковая установка при наклонном старте такого типа ракет по своему весу и габаритам во много раз превышала бы существующие стартовые устройства.

Рис.1 Траектория баллистической ракеты.

При вертикальном старте ракета устанавливается на пусковой стол, который снабжен центральным проемом для выхода газовой струи ракетного двигателя.

После старта БР продолжает вертикальный подъем примерно в течении 5..10 сек., после чего начинается ее разворот в сторону цели.

Траекторию БР (рис.1) можно в первом приближении рассматривать как плоскую кривую. Участок траектории от точки старта О до точки А проходится ракетой с работающим двигателем и называется активным участком траектории (АУТ), или участком выведения. Та часть траектории, где ракета испытывает заметное воздействие аэродинамических сил, называется атмосферным участком полета. Для тяжелых БР атмосферный участок всегда короче АУТ.

После выключения двигателя (точка А) ракета или головная часть (ГЧ) летит как свободно брошенное тело, и вид траектории полета определяется только силой притяжения Земли и начальными условиями для этого участка полета.

Участок траектории от точки А до точки С носит название баллистические (эллиптический) участок траектории. Точка С расположена на одинаковой высоте с точкой А.

Начальными условиями баллистического участка траектории являются: - дальность конца АУТ;

- высота конца АУТ;

- скорость ракеты в точке А;

- угол траектории в точке А.

Участок траектории от точки С до точки Д носит название участок входа в атмосферу. Так как траектория свободного полета симметрична относительно большой оси эллипса, то можно принять: , или известно из расчетов активного и эллиптического участков траектории;

, , .

Траектория выведения ракеты-носителя (рис.2), например, двухступенчатой, по своему характеру практически не отличается от траектории БР дальнего действия. В точке А1 заканчивают работу двигатели первой ступени. Блоки первой ступени отбрасываются и падают на Землю (точка С1). Вторая ступень сообщает ракете необходимую скорость, и в конце активного участка второй ступени, уже на орбите, двигатель выключается (точка А2).

Рис.2. Траектория ракеты-носителя.

Разворот ракеты на участке выведения осуществляется органами управления по заранее выбранной программе. Выведение ракеты характеризуется программным углом (угол тангажа) - угол между продольной осью ракеты и линией горизонта точки старта. Зависимость угла от времени полета называется программой изменения угла тангажа.

Полная дальность полета БР дальнего действия равна: , где - дальность активного участка траектории;

- дальность эллиптического участка траектории;

- дальность конечного (атмосферного) участка траектории.

1. Расчет активного участка траектории

Допущения, принимаемые при расчете: Земля имеет форму сферы радиусом ;

Не учитывается влияние вращения Земли ;

Значения параметров атмосферы в точке старта соответствует стандартной атмосфере ГОСТ 4401-81;

Ракета стартует с поверхности Земли, т.е.: ;

Вектор тяги двигательной установки направлен по продольной оси ракеты;

Управление ракетой на траектории полета идеальное;

Центр давления у ракеты совпадает с ее центром масс;

При составлении дифференциальных уравнений движения ракеты на АУТ учитывается действие только основных сил, т.е.: а) сила тяги двигательной установки;

б) сила притяжения Земли;

в) аэродинамическая сила сопротивления воздуха.

Управляющие и другие силы, действующие на ракету в полете, намного меньше основных, и их можно не учитывать.

Запишем систему дифференциальных уравнений движения ракеты на АУТ в плоскости стрельбы, и добавим сюда недостающие геометрические соотношения, характеризующие траекторию полета ракеты

Запишем геометрические соотношения, характеризующие траекторию полета ракеты в полярной системе:

Из уравнений (3) после интегрирования определяется сферическая дальность полета на АУТ и местная высота:

Для углов , , , и могут быть написаны следующие соотношения (рис.3):

Рис.3. Основные силы и моменты, действующие на ракету в полете.

В формулы (1)-(4) входят следующие величины: - скорость движения ракеты;

- осевая аэродинамическая сила;

- подъемная (боковая) аэродинамическая сила;

- плотность воздуха на высоте полета;

- плотность воздуха на уровне моря;

- площадь миделя ракеты;

- диаметр ракеты;

- коэффициенты аэродинамических сил сопротивления воздуха, определяются при аэродинамических расчетах. Величины этих коэффициентов - переменные и в основном зависят от скорости или числа Маха ;

- число Маха;

- скорость звука в атмосфере на высоте полета;

- масса ракеты;

- стартовая масса ракеты;

- массовый секундный расход топлива;

- время полета;

- вес ракеты;

- ускорение земного притяжения на высоте полета;

- ускорение земного притяжения у поверхности Земли;

- расстояние от центра Земли до ракеты (радиус-вектор ракеты);

- угол атаки, угол между вектором скорости и продольной осью ракеты;

- угол наклона траектории, угол между вектором скорости и линией горизонта точки старта;

- угол наклона траектории к местному горизонту, угол между вектором скорости и линией местного горизонта;

- полярный угол;

- тяга двигателя;

Тягу двигательной установки в общем случае можно определить по следующей формуле: , где: - тяга при работе маршевых и управляющих двигателей;

- тяга при работе маршевых двигателей;

- тяга при работе управляющих двигателей;

- удельный импульс тяги маршевых, управляющих двигателей;

- массовый секундный расход маршевых, управляющих двигателей;

- давление атмосферы на высоте полета;

- площадь среза сопла маршевых и управляющих двигателей;

- площадь среза сопла маршевых двигателей;

- площадь среза сопла управляющих двигателей;

На стадии предэскизного проектирования для ракет с конической головной частью, все ступени которых имеют одинаковый диаметр, могут использоваться следующие зависимости для определения аэродинамических коэффициентов и :

Проведя незначительные преобразования уравнений (1)-(3) получим их выражения в виде, удобном для численного интегрирования:

При численном решении системы из 4-х дифференциальных уравнений в любой момент времени легко определить следующие параметры траектории:

Но для определения параметров движения ракеты на АУТ недостаточно полученной системы уравнений (5), так как неизвестно изменение угла атаки и изменение угла тангажа . Поэтому чтобы замкнуть систему (5), к ней необходимо добавить одно из соотношений: а) программное изменение угла тангажа ;

б) изменение угла атаки по траектории.

2. Программа движения ракеты на АУТ

Анализ реальных программ движения управляемых баллистических ракет (УБР) и ракет-носителей позволяет создать приближенные программы, которые используются при решении задач баллистического проектирования управляемых ракет.

Таким образом, для первых ступеней УБР близкой к оптимальной является приближенная программа, описываемая соотношением:

Далее упрощая приближенную программу можно пренебречь величинами углов атаки.

В этом случае угол тангажа можно заменить углом траектории и использовать хорошо согласующуюся с реальными приближенную программу вида:

где - угол траектории в конце активного участка;

- коэффициент заполнения топливом субракеты;

- рабочий запас топлива i-й активной ступени;

- стартовая масса i-й активной ступени;

- массовый секундный расход топлива i-й активной ступени;

Наиболее удобным будет задание различных ограничений на программу движения ракеты на АУТ для некоторых характерных участков траектории в зависимости от количества ступеней ракеты.

Рис.4. Программа угла тангажа и изменения угла атаки для двухступенчатой ракеты.

1.Двухступенчатая ракета (рис. 4).

Расчеты, связанные с выбором оптимальных программ, показывают, что для всех ступеней полета, начиная со второй, на которые не накладывается ограничений по углу атаки, оптимальная программа весьма близка к прямолинейной. Программа полета второй ступени включает следующие участки: участок "успокоения" от момента времени до , в течении происходит полет с углом атаки . Участок "успокоения" необходим для ликвидации возмущений, возникающих при разделении ступеней;

участок доразворота (при необходимости) от момента времени до . На этом участке , а угол атаки определяется и выражения участок полета с постоянным углом тангажа .

Примечание: 3-я и последующие ступени считаем летящими с постоянным углом тангажа.

Рис.5. Основные силы, действующие на ракету при спуске. баллистический траектория ракета перегрузка

3. Расчет баллистического (эллиптического) участка траектории

Положение ракеты в начале эллиптического участка определяется расчетом активного участка траектории и на данном этапе расчета его можно считать заданным. Движение ракеты от точки до точки , расположенных на одинаковой высоте или одинаковом радиусе , происходит по дуге эллипса, симметричной относительно оси (рис.1).

Эллиптическая дальность полета равна:

, - константа Земли.

Формула для определения оптимального угла траектории в конце активного участка, при котором дальность полета ракеты на эллиптическом участке будет максимальной.

Сравнивая значение угла с полученным значением при решении системы уравнений (5), необходимо произвести уточнение программы полета ракеты на АУТ с целью достижения максимальной дальности полета БР.

Время полета ракеты на эллиптическом участке:

4. Расчет конечного (атмосферного) участка траектории

При исследовании параметров движения головной части на атмосферной части пассивного участка траектории необходимо учитывать влияние аэродинамического лобового сопротивления.

Движение центра масс головной части относительно не вращающейся Земли при нулевом угле атаки в проекциях на оси скоростной системы координат описывается следующей системой уравнений (рис.6):

где - масса головной части.

5. Коэффициенты перегрузок, действующих на ракету в полете

При оценке прочности конструкции ракеты необходимо знать не только равнодействующие внешних сил действующих на ракету в целом, но и их отдельные составляющие. При решении системы уравнений (5) или (13) известны тангенциальное и нормальное ускорения движения ракеты. Найдем осевую и поперечную составляющие ускорения в связанной системе координат (рис.3).

Учитывая, что на массу ракеты, кроме осевых и поперечных ускорений, действует еще и ускорение земного притяжения, после незначительных преобразований получим коэффициенты суммарной (статической и динамической) осевой и поперечной перегрузок действующих на ракету в полете.

Величины и являются чисто траекторными параметрами и определяются в результате численного интегрирования уравнений движения ракеты.

6. Упрощенная блок-схема решения задачи на ЭВМ

7. Расчет траектории управляемой БР

Расчет активного участка траектории

Исходные данные для расчета

Единица измерения ступень

1 2

Масса полезной нагрузки кг 735

Стартовая масса ступени кг 50360 18967

Масса ступени кг 26350 9935

Масса топлива ступени кг 24010 9032

Расход топлива ступени кг/с 240,8 51,3

Уд.им.дв-ля в пустоте м/с 3142 3292

Диаметр ступени м 1,85

Площадь среза сопла м^2 0,228 0,520

Время работы дв-ля с 99 176

Полное время полета БР с 275

Шаг инегрирования СДУ с 1 1

Программа полета ракеты

Начало разворота 1 ступени Трн=5с

Конец разворота 1 ступени Трк=26с

Начало разворота 2 ступени Трн=4с

Конец разворота 2 ступени Трк=176с

Начало доразворота 1 ступени Тдр=60с

Результаты расчета

Результаты расчета

Скорость Циалковского в конце АУТ Vi=8413м/с

Время полета на эллипт. участке Тэл=1630с

Угол траект. в конце АУТ ТЕТАА=30,59град

Оптим. угол трает. в конце АУТ ТЕТАК=30,6град

Дальность эллипт. участка Lэ=7179км

Дальность эллипт. участка при оптим. Угле LЭO=7179км

Макс. высота эллипт. участка Hb=1741км

Ошибка по дальности эллипт. участка Dле=0,0%

8. Расчет участка снижения

Исходные данные для расчета

Масса головной части кг 2100

Начальная скорость м/с 6314

Начальная высота полета км 512

Начальный угол траектории град -30

Диаметр головной части м 1,85

Результаты расчета

Литература

Гречух И.Н. Расчет траектории баллистических ракет. Методические указания к курсовой работе по специальности 13.06 - Ракетостроение. Омск: ОМГТУ, 1994. 18с.

Гречух И.Н. Лекции по предмету "Теория полета".

Размещено на .ru
Заказать написание новой работы



Дисциплины научных работ



Хотите, перезвоним вам?