Обзор достижений в кабельной технике и конструкций силовых кабелей. Расчёт конструктивных элементов кабеля: токопроводящей жилы, изоляции; электрических и тепловых параметров кабеля. Зависимость тока короткого замыкания от времени срабатывания защиты.
Аннотация к работе
Расчет конструктивных элементов кабеля Расчет электрических параметров кабеля 4.2 Диэлектрические потери в изоляции, сопротивление изоляции, электрическая емкость кабеля, индуктивность жилы при замкнутых оболочках на землю 5.1 Расчет тепловых сопротивлений конструктивных элементов и окружающей среды 5.
Введение
1. Обзор технической литературы
1.1 Последние достижения в кабельной технике
1.2 Обзор конструкций силовых кабелей
2. Обоснование выбора конструкции кабеля
3. Расчет конструктивных элементов кабеля
3.1 Токопроводящая жила
3.2 Изоляция
3.3 Защитные покровы
4. Расчет электрических параметров кабеля
4.1 Сопротивление токопроводящей жилы постоянному и переменному току
4.2 Диэлектрические потери в изоляции, сопротивление изоляции, электрическая емкость кабеля, индуктивность жилы при замкнутых оболочках на землю
4.3 Потери полезной энергии в металлических оболочках кабеля
5. Тепловой расчет кабеля
5.1 Расчет тепловых сопротивлений конструктивных элементов и окружающей среды
5.2 Расчет допустимого тока нагрузки, передаваемой мощности
5.3 Расчет распределения температуры в кабеле
5.4 Расчет теплоемкости конструктивных элементов. Расчет постоянной времени нагрева. Кривые нагрева и охлаждения
5.5 Расчет зависимости температуры жилы от времени для тока нагрузки и тока перегрузки
5.6 Расчет зависимости тока перегрузки от времени перегрузки
5.7 Расчет зависимости тока короткого замыкания (с предшествующей и без предшествующей нагрузки) от времени срабатывания защиты
6. Расчет массы кабеля
Список литературы
Введение
Кабельные изделия предназначены для передачи электрической энергии или информации на расстояние, т.е. для создания самых разнообразных электрических, электронных, радиотехнических и волоконнооптических схем и цепей. Ни одно современное техническое устройство, работа которого связана с использованием электрических и электронных схем, не может работать без кабелей и проводов, которые образуют системы электроснабжения, информатики и управления работой этого устройства [12].
Технический прогресс в различных отраслях народного хозяйства вызвал рост потребности в кабельной продукции и необходимость создания новых типов кабелей и проводов с более высокими характеристиками.
Современная кабельная техника характеризуется применением высоких напряжений и высоких частот, увеличением передаваемых мощностей, созданием кабелей и проводов для работы в условиях высоких и низких температур, высокой влажности окружающей среды, воздействия радиации и химически активных веществ, наличия вибрации и т.п. Повышенные требования к свойствам кабелей и проводов ограничивают возможность их удовлетворения с использованием существующих электроизоляционных материалов и вызывают необходимость создания новых, более совершенных материалов. Без применения специальных материалов невозможно создание новых типов кабелей и проводов для различных отраслей народного хозяйства. Вообще, потребность в изолированных кабелях и проводах возникла, как только появились генераторы электрической энергии, и стала необходимой передача ее на большие расстояния [15].
1. Обзор технической литературы
1.1 Последние достижения в кабельной технике
В настоящее время в отечественной практике электросетевого строительства все большее применение находят кабели высокого напряжения с изоляцией из сшитого полиэтилена. Однако уже неоднократно отмечалось, что неверно принятые проектные решения могут привести к сооружению кабельных линий с неоптимальными технико-экономическими показателями. Юрий Анатольевич Лавров считает, что обеспечить необходимую эксплуатационную надежность кабельных линий высокого напряжения можно только при комплексном рассмотрении всех факторов, влияющих на жизнь кабеля.
Применение в кабелях высокого напряжения (ВН) СПЭ-изоляции (ее также называют пластмассовой, соответственно кабели с такой изоляцией - КПИ) дает определенные преимущества по сравнению с маслонаполненными кабелями среднего и высокого давления. К основным преимуществам кабелей нового поколения следует прежде всего отнести более высокие значения пропускной способности, легкость монтажа, сниженные эксплуатационные затраты и отсутствие жидких компонентов. Однако относительно высокая стоимость КПИ ВН требует как на стадии выбора конструкции кабеля и проектирования кабельных линий (КЛ), так и на стадии их эксплуатации системного подхода, при котором необходимо по возможности учесть все факторы, влияющие на экономичность, эксплуатационную надежность, а в ряде случаев и экологичность КЛ.
Экономичность и эксплуатационная надежность
Основная задача проектировщика и эксплуатирующей организации заключается в нахождении золотой середины, когда спроектированная КЛ ВН будет иметь требуемую надежность эксплуатации, а также фактическую наработку не меньше регламентированного срока службы кабеля при минимальных стоимостных показателях КЛ, обусловленных себестоимостью и эксплуатационными издержками.
В процессе эксплуатации изоляционная конструкция КПИ ВН подвергается воздействию теплового поля (в нормальном режиме и в режимах перегрузки), а также электрического поля промышленной частоты и высокочастотных перенапряжений. Уровень и форма последних зависят от схем применения КПИ, которые условно можно разделить на следующие группы: · использование КПИ 110-220 КВ в качестве кабельной вставки между ВЛ и КРУЭ (ОРУ) с длиной КЛ от 0,5 до 3,0 км с последующим электроснабжением потребителей посредством РКС СН;
· применение КПИ 220-500 КВ длиной в единицы километров для глубокого ввода мощности в города-мегаполисы с последующим электроснабжением потребителей через РКС ВН и СН;
· применение КПИ 220-500 КВ длиной 1-2 км для вывода мощности на ГЭС со стороны нижнего бьефа на КРУЭ 220-500 КВ, расположенного на верхнем бьефе станции;
· при пересечении ВЛ 500 КВ коридора, в котором проходят несколько цепей ВЛ 110-220 КВ, вместо применения высоких переходных опор в месте пересечения используется кабельная вставка длиной 0,3 - 0,5 км;
· применение в городских РКС ВН кабельных линий 110-220 КВ длиной 5-15 км, осуществляющих связь между генерирующими источниками (ТЭС, ТЭЦ) и КРУЭ.
Грозоупорность
Технико-экономическая координация изоляции КПИ ВН, связанная с приведением изоляции к норме, должна осуществляться с учетом современных концепций оценки грозоупорности объектов электроэнергетики. В частности, для правильного выбора защитных характеристик ОПН необходимо принимать во внимание: · расстояние от места грозового поражения ВЛ до кабельной вставки;
· схему применения КПИ;
· случайный характер ориентировки канала лидера разряда молнии в системе «грозотрос - провода ВЛ - земля»;
· реальную форму волны тока молнии;
· динамические свойства вольтамперной характеристики ОПН при воздействии крутых волн.
Следует отметить, что для повышения эксплуатационной надежности и срока службы КПИ ВН наряду с ограничением грозовых перенапряжений желательно уменьшить частость их воздействия и снизить крутизну импульсных волн напряжения. Для достижения этих целей на стадии проектирования могут быть предусмотрены по отдельности или в сочетании мероприятия (оптимальные для конкретного проекта): · в зависимости от схемы применения установка ОПН по концам (или с одной стороны) кабельной вставки;
· применение на двухцепных ВЛ 110-220 КВ дифференциальной линейной изоляции;
на подходе к кабельной вставке: · включение в рассечку провода ВЧ-заградителя (иногда с параллельным подключением ОПН);
· применение продольных защитных устройств с высокоомной оболочкой из ферромагнитного материала;
· выполнение на нескольких ближайших опорах сниженного сопротивления заземляющего устройства;
· замена провода типа АС на провод типа СА (провод повышенной механической устойчивости, который применяется для ВЛ в горных условиях, внутри провода алюминиевый сердечник, сверху - стальные проволоки);
· применение подвесных разрядников (ОПН).
Тепловой режим
Экономичность, эксплуатационная надежность и фактический срок службы КПИ ВН зависят в том числе и от теплового режима эксплуатации кабелей, который определяется способом прокладки кабелей, условиями теплоотвода, схемой заземления экранов, наличием или отсутствием транспозиции экранов, количеством рядом расположенных цепей, наличием внешних источников тепла и локальных специфических мест с худшими условиями теплоотвода и т.д. Из перечисленного перечня факторов остановимся на двух, которые в настоящее время не совсем отработаны в нормативном и методическом планах: выбор конструкции кабеля (по токовой нагрузке) и применение специальных схем соединения экранов. На первой стадии выбора конструкции кабеля (сечения токопроводящей жилы) расчет теплового режима эксплуатации КЛ по токовой нагрузке осуществляется приближенно, с использованием так называемых поправочных коэффициентов, учитывающих специфику грунта, прокладки и т.д. После выбора конструкции кабеля должен осуществляться уточненный расчет теплового режима КЛ на основе методики МЭК 60287 (при необходимости численных расчетов методом конечных элементов). Как правило, уточненный расчет теплового поля с учетом всех нюансов в качестве технической поддержки осуществляют сервисные технические службы предприятий-изготовителей кабелей либо квалифицированные специалисты. Однако на практике встречаются случаи, когда выбор конструкции кабеля и условий его прокладки ограничивается стадией инженерных прикидок, что не совсем правильно.
Для повышения пропускной способности КПИ ВН применяют специальные схемы заземления и соединения экранов, которые позволяют убрать дополнительный источник тепла в изоляционной кабельной конструкции за счет устранения протекания продольных токов по экранам кабеля. К реализации этой идеи необходимо подходить осторожно, с позиции разумной достаточности, поскольку целесообразность выбора схемы заземления экранов по концам КЛ, одностороннего заземления (многоразрывного одностороннего заземления) или транспозиции экранов зависит от многих взаимосвязанных факторов: передаваемой мощности, сечения токопроводящей жилы, способа прокладки, условий теплоотвода, наличия принудительной вентиляции, длины КЛ и других.
На практике также встречались случаи, когда на относительно коротких участках КЛ (длиной до 1,5-2 км) и при относительно небольшой передаваемой мощности проектировалась не просто схема одностороннего заземления экрана (что требовало минимальных финансовых вложений), а выбиралась схема транспозиции экранов. Помимо увеличенных стоимостных показателей КЛ, дополнительно появлялась проблема защиты оболочек в местах их специального соединения от импульсных воздействий. Поэтому выбор той или иной схемы соединения экранов должен производиться совместно с тепловым расчетом КЛ на основе технико-экономического обоснования, поскольку может оказаться экономически выгоднее несколько увеличить сечение токопроводящей жилы (или перейти с алюминиевой на медную) по сравнению со случаем применения транспозиции экранов, где необходимо предусматривать по трассе КЛ обслуживаемые колодцы для узлов транспозиции, разделительные (транспозиционные) муфты, защитные аппараты для оболочек и т.д. Наряду с вышеотмеченными моментами на надежность эксплуатации и срок службы КПИ ВН также влияют условия их эксплуатации: например, фактические (которые могут не соответствовать проектным) условия теплового воздействия на КЛ в нормальном режиме и режимах перегрузки, а также периодичность, форма и уровни напряжений при профилактических испытаниях.
Необходимость мониторинга для получения фактических тепловых условий эксплуатации КЛ (позволяющих прогнозировать их остаточный ресурс и при необходимости оперативно изменять токовую нагрузку) необходимо применять современные системы мониторинга в режиме реального времени на основе оптоэлектронных устройств, оптоволокна (распределенного температурного датчика, встроенного непосредственно в силовой кабель либо прикрепленного к кабелю снаружи) и удобных (наглядных) для диспетчера сервисных программ. При этом результаты постоянного контроля температурной кривой на поверхности кабеля вдоль трассы КЛ должны записываться в электронную базу данных с момента ввода КЛ в работу и до конца ее эксплуатации. К основным задачам непрерывного мониторинга следует отнести: · определение и фиксацию случаев превышения номинальной рабочей (а также максимальной допустимой) температуры кабеля по времени и месту вдоль трассы КЛ;
· прогнозирование допустимой нагрузки при достижении кабелем максимальной расчетной температуры;
· на основе превентивных мер создание оптимальных токовых нагрузок КЛ, обеспечивающих непрерывность электроснабжения потребителей и снижение вероятности возникновения аварийных событий;
· прогнозирование остаточного ресурса кабеля на основе комплексной диагностики технического состояния КЛ.
Если в результате измерений и проверок окажется, что фактическая температура жил кабелей выше допустимого значения или обнаружатся участки с неудовлетворительными условиями охлаждения, то необходимо выполнить следующие мероприятия: улучшить вентиляцию в туннелях и каналах; засыпать траншеи грунтом с более высокой теплопроводностью; уменьшить токовую нагрузку на кабель до необходимой величины. К сожалению, существующие зарубежные системы мониторинга в настоящее время довольно дороги и не каждое предприятие может себе позволить их установить. Вместе с тем определение локальных перегревов и превышения допустимой температуры кабеля (с возможностью передачи информации в наглядном виде на диспетчерский пульт) может быть осуществлено, например, при использовании отечественной системы мониторинга типа ПТС-1000 (фирмы «Седатэк»), которая стоит дешевле, но по техническим характеристикам не уступает зарубежным аналогам.
Выбор сечения экранов
Вопрос термической устойчивости экранов остро стоял для КПИ первого поколения, в конструкции которых экраны представляли собой медную ленту толщиной 0,15-0,25 мм. В электрических сетях номинальным напряжением 110 КВ и выше (с эффективно заземленной нейтралью) при электрическом пробое КПИ в зависимости от мощности подстанции по экрану кабеля протекали токи КЗ в десятки КА, которые приводили к повреждению (выгоранию) экрана на значительной длине. Для локализации места повреждения экрана предлагалось использовать дополнительный проводник, который располагался в непосредственной близости от трех фаз КЛ (например, в центре фаз, расположенных треугольником вплотную), а необходимое сечение проводника определялось мощностью подстанции и временем отключения короткого замыкания в конкретной сети. Очевидно, что эксплуатация КПИ с дополнительным проводником была связана с определенными трудностями. В конструкциях КПИ второго поколения наряду с совершенствованием в технологии изготовления изоляционной системы было увеличено сечение экрана, который выполнялся уже из определенного количества медных проволок, поверх которых навивалась медная лента.
В настоящее время номенклатурный ряд сечений жил КПИ, выпускаемых отечественными предприятиями-производителями, находится в интервале 50-800 мм2 с соответствующим интервалом сечений экранов 16-50 мм2. По специальному заказу производители могут изготовить КПИ с увеличенным до 70-95 мм2 сечением экрана.
На практике имеют место случаи, когда выбирают необоснованно высокие значения сечений экранов, что может привести к необоснованному удорожанию строительства КЛ. По состоянию на 01.01.2007 г., средняя цена 1 км фазы КПИ с сечением токопроводящей жилы 500 мм2 и сечением экрана 50 мм2 составляет 650 тыс. руб. Этот же кабель, но с увеличенным до 70 мм2 сечением экрана стоит 730 тыс. руб./км. Таким образом, уже на стадии проектирования себестоимость строительства КЛ для заказчика может увеличиться. Эти цифры свидетельствуют о необходимости тщательного определения расчетным путем для конкретной проектируемой схемы величин токов КЗ, протекающих по экранам кабелей, и далее по номограммам, приведенным в каталогах предприятий-изготовителей КПИ, следует определить требуемое сечение экрана.
Диагностика изоляции
Для получения полной картины о фактической наработке кабеля необходимо проводить комплексную диагностику технического состояния изоляционной системы КПИ, когда наряду с информацией о тепловом режиме эксплуатации КЛ проводится анализ основных количественных характеристик диагностируемых параметров (напряжение зажигания частичных разрядов (ЧР), выделяемая ЧР энергия, tg , С, Rиз). В идеале эксплуатационный персонал интересует: · максимально достоверный прогноз остаточного ресурса кабеля;
· рекомендации по дальнейшим условиям эксплуатации КЛ;
· сроки проведения следующего диагностического обследования;
· периодичность профилактических испытаний и их параметры (уровень, частота и длительность приложенного напряжения).
К сожалению, эти рекомендации пока невозможно корректно разработать, поскольку в настоящее время нет достаточно полной ясности в выявлении признаков дефектов СПЭ-изоляции, их пороговых (количественных) значений, а также алгоритмов по оценке динамики деградации изоляционной системы. Вместе с тем научный прогресс в области микро- и макроисследований по выявлению основных факторов, снижающих электрическую прочность СПЭ-изоляции, позволяет надеяться, что в ближайшем будущем будут разработаны формализованные критерии оценки фактического состояния изоляционной системы кабеля, представляющие собой физико-математические модели исправного (работоспособного без ограничений), дефектного (работоспособного с ограничениями) и аварийного (требующего плановой замены) кабеля.
Экологические аспекты проектирования
Вопросы электромагнитной совместимости КЛ ВН с биосферой возникают, когда прокладываются кабели по дну водоема и в кабельных сооружениях.
В первом случае с помощью рационального выбора конструкции кабеля, способов прокладки отдельных фаз КЛ и режимов ее эксплуатации можно снизить до допустимой величины для ихтиофауны интенсивность электромагнитного поля вдоль подводной трассы КЛ. Во втором случае, когда прокладываются в кабельных тоннелях многоцепные КЛ 110-220-500 КВ с большими токовыми нагрузками в 1,5-2,5 КА, необходимо обеспечить нормируемый предельно допустимый уровень по напряженности магнитного поля для эксплуатационного и ремонтного персонала. Это достигается за счет рационального сближения отдельных фаз КЛ (с учетом теплового режима ее эксплуатации) и оптимальной взаимной «фазировки» кабелей многоцепных КЛ. В рассматриваемом случае итеративно проводится численный расчет теплового и магнитного полей и при необходимости выдвигаются требования к ограничению по времени пребывания персонала вблизи трассы многоцепных КЛ.
Обеспечение необходимой эксплуатационной надежности и высоких технико-экономических показателей КЛ ВН может быть достигнуто только при комплексном рассмотрении всех факторов, влияющих на состояние кабеля от его выбора (выбора конструкции и принятия рациональных решений на стадии проектирования) до окончания срока его службы (определяемого фактической наработкой на стадии эксплуатации) [1].
В больших городах, где прокладка воздушных линий электропередач представляет собой огромные трудности, основным средством передачи электрической энергии становятся подземные высоковольтные кабельные линии на напряжение 220 КВ и выше, что делает их основой современной энергосистемы города.
Несмотря на то, что кабельные линии широко используются уже на протяжении половины века, только сейчас современные технологии проектирования и производства позволяют стать им эффективной альтернативой воздушных линий электропередач.
Отличительными возможностями высоковольтные кабельные линий являются: Гибкость при проектировании систем энергоснабжения
Подземные кабели обладают уникальными свойствами по передаче энергии - они невидимы на поверхности земли и не требуют глубокого закапывания, не излучают электрических полей и могут быть спроектированы, так чтобы не излучать магнитные поля, имеют улучшенные характеристики по потери мощности, высокую стойкость при аварийных нагрузках. В результате подземные кабели можно использовать в местах плотной застройки, реках и сложных геологических условиях, местах, где требуется сохранения окружающей среды, ландшафтов, значимых строений, памятников искусства, местах зарезервированных для будущего строительства и т.п.
Высокая рентабельность
Основным сдерживающим фактором использования подземных кабелей в прошлом была их высокая стоимость. Сегодня себестоимость их производства значительно снизилась за счет применения новых технологий и увеличения производительности оборудования, что приблизило стоимость подземных кабельных сетей к стоимости воздушных линий электропередач. Это означает, что проектировщики систем электроснабжения все чаще будут останавливать свой выбор на подземных кабельных сетях как на экономически выгодном и технологически эффективном средстве создания энергетической системы города.
Особенно необходимо подчеркнуть, что подземные кабельные сети не только снижают визуальное воздействие, но и значительно сокращают стоимость обслуживания по сравнению с воздушными линиями. Они так же менее восприимчивы к тяжелым погодным условиям таким как: штормы, землетрясения. В дополнение скажем, что подземные кабели содержат большое количество меди, наиболее токопроводящего металла, в результате чего на 30% снижаются потери при высоких нагрузках по сравнению с воздушными линиями электропередач, а следовательно повышается рентабельность всей энергосистемы.
Повышенная надежность
Современные кабельные сети используют поперечно сшитый полиэтилен (XLPE) в качестве основного изоляционного материала, который уже 20 лет подтверждает свою высокую надежность.
Снижение потерь мощности (энергосбережение)
Подземные высоковольтные кабели используют в качестве проводника более эффективные медные сплавы, которые работают при более низких температурах. Сочетание этих особенностей позволяют снабжать электроэнергией потребителей с максимальной эффективностью, что особенно важно в целях сохранения окружающей среды и экономии энергоресурсов.
Продвинутые технологии монтажа
Новые технологии сочленения участков кабеля и прокладки его в грунте позволяют реализовывать проекты создания энергетических систем в течение нескольких месяцев притом что раньше на это уходили годы. В тех местах, где невозможно прокапать кабельную траншею или канал, кабели монтируются в туннелях. В некоторых случаях использование существующих туннелей позволяет значительно снизить стоимость работ.
Возможность мониторинга состояния кабеля
Для сокращения времени аварийного отключения, операторы энергетических систем могут измерять температуру высоковольтного кабеля по всей его длине с шагом пол метра с помощью оптического волокна вмонтированного в наружную оболочку кабеля. Такой мониторинг позволяет управлять общей нагрузкой всей сети, оптимально перераспределяя ее между линиями не допуская перегрузок. В случае повреждения кабеля вследствие перегрузки или внешнего воздействия система мониторинга с точностью до метра определит место повреждения, что значительно сократит время на устранение аварии.
Интеллектуальная система мониторинга высоковольтных кабельных сетей ПТС-1000 позволяет решить три основных проблемы эксплуатации подземных кабелей из сшитого полиэтилена, которые в значительной степени определяют его срок службы в связи с технологическими особенностями конструкционных материалов: 1. Превышал ли кабель свою нормальную рабочую температуру если да то, как долго и в каком месте?
2. Превышал ли кабель свою максимально допустимую температуру если да то, как долго и в каком месте?
3. Предсказывать допустимую нагрузку, в случае если кабель достигнет своей максимальной расчетной температуры?
Обладая этой информацией, эксплуатирующая организация может оперативно определять остаточный срок службы высоковольтного кабеля, а, следовательно, более эффективно управлять своими капиталовложениями [2].
Современная кабельная изоляция
ЗАО «АББ Москабель» идет в ногу со временем и использует в производстве кабелей только лучшие материалы ведущих мировых производителей.
В своей работе компания уделяет много внимания развитию и совершенствованию технологий, которые обеспечивают высокое качество выпускаемых изделий. Именно поэтому для изоляции кабелей среднего и высокого напряжения она использует лишь пероксидосшиваемые полиэтилены - триингостойкий (ТСПЭ) и сополимерный (ССПЭ), что гарантирует отличные эксплуатационные характеристики продукции АББ Москабель.
Технология создания кабельной изоляции из сшитого полиэтилена появилась в 70-х годах 20 века. Сшивка - создание пространственной решетки за счет образования продольно-поперечных связей между макромолекулами полимера - увеличивает жесткость изоляции при повышенных температурах. В процессе старения (деструкции) сшитого полиэтилена его эксплуатационные характеристики снижаются. Основная причина этого - водные триинги - повреждения полимера, развивающиеся на технологических дефектах изоляции при совместном действии электрического поля и влаги, диффундирующей из окружающей среды. Вместе с влагой в изоляцию проникают агрессивные вещества. Они разрушают полимерные цепи, приводя к образованию микрополостей, которые в свою очередь служат резервуарами для накопления влаги. Под воздействием электрического поля полярные молекулы воды образуют древовидные структуры, направленные вдоль силовых линий электрического поля, - водные триинги. Различают два вида триингов: «бант» (зарождаются в объеме изоляции, заполненном водой, или на включениях инородных материалов) и «веер» (развиваются с поверхности электропроводящих экранов).
Электрическая прочность изоляции в области триингов существенно снижается, что повышает напряженность на неповрежденной части изоляции и ускоряет процесс роста триинга. С этим явлением в 70-е годы были связаны многократные отказы кабелей с изоляцией из высокомолекулярного термопластичного полиэтилена и СПЭ. Лабораторные испытания прояснили механизм его образования и развития в изоляционных материалах, что позволило подобрать новые добавки, обеспечивающие высокую устойчивость сшитых полиэтиленов к образованию водных триингов.
а) б)
Рис. 1. Водный триинг а) типа «веер» с каналом пробоя б) типа «бант»
Современные изоляционные материалы
В настоящее время существуют две концепции снижения негативного влияния водных триингов на свойства изоляции: · согласно первой в полиэтилен вводятся специальные химические добавки, в итоге получается триингостойкий сшитый полиэтилен - ТСПЭ;
· в соответствии со второй создаются макромолекулы, в состав которых, помимо этилена, входит более 5% других химических соединений, в итоге получается сополимерный сшитый полиэтилен - ССПЭ (механическая смесь полиэтилена низкой плотности, сополимера - этилена и этилакрилата или бутилакрилата и антиоксиданта, снижающего скорость окислительных процессов).
ТСПЭ применяется с 1983 года. В течение 23 лет лабораторные испытания подтверждают его устойчивость к электрическому старению в присутствии влаги. В частности, длина триингов в ТСПЭ почти в 2 раза ниже, а степень их разветвленности значительно меньше, чем в гомополимере. Так, в рамках испытательной программы на наружную поверхность кабелей с защитной оболочкой воздействие оказывала вода при температурном режиме, сопоставимом с реальными условиями их эксплуатации. В течение пятилетнего старения кабеля с изоляцией из пероксидосшиваемого ТСПЭ не было зарегистрировано ни одного отказа, у СПЭ-кабелей наблюдалось около 10% отказов, а у кабелей с изоляцией из этиленпропиленовой резины (ЭПР) зафиксировано около 55% отказов.
В ходе ускоренных испытаний на стойкость к развитию триингов, проведенных в Северной Америке по методике Ассоциации осветительных компаний имени Эдисона, ТСПЭ подтвердил свои характеристики. Главное преимущество изоляции из ТСПЭ - это незначительное по сравнению с изоляцией СПЭ снижение электрических характеристик во времени. Электрическая прочность изоляции из СПЭ за год испытаний на старение снижается на 60%, а изоляции из пероксидосшиваемого ТСПЭ за год старения снижается только на 30%. За последние годы были проведены два исследования, в которых кабели, выведенные из эксплуатации, использовались для получения информации об их электрических характеристиках. Несмотря на то, что условия прокладки несколько отличались, результаты подтверждают высокую стабильность материалов в процессе эксплуатации (табл. 1). В 2004 году в материалах выставки «Wire. China» («Проволока. Китай») были опубликованы результаты испытания кабелей на старение, подтверждающие устойчивое сохранение электрической прочности и меньшее количество триингов типа «бант» у ТСПЭ-изоляции в сравнении со СПЭ-изоляцией (рис. 1). Причем на срок службы кабеля влияют качество производства и опыт производителя (рис. 2).
ССПЭ также проходит испытания на стойкость к водным триингам. Например, в 1983 году для оценки скорости роста триингов использовались короткие образцы кабеля на напряжение 15 КВ, которые были подвергнуты старению при напряженности 5 КВ/мм в течение 3000 ч. В жилу кабеля подавалась водопроводная вода, и ежедневно в течение 8 ч поддерживалась температура 90°С. После этого измерялось распределение триингов типа «бант» по длинам. Результаты экспериментов показывают, что в изоляции из ССПЭ водных триингов значительно меньше, чем в изоляции из СПЭ, а их максимальная длина в 2 раза ниже. Пероксидосшиваемый ССПЭ демонстрирует такие же отличные результаты, как и пероксидосшиваемый ТСПЭ.
Рис. 2. Зависимость электрической прочности при переменном напряжении от длительности высоковольтных испытаний
Испытания на модельных кабелях показали существенное превосходство изоляции из ТСПЭ и ССПЭ, что связано со способностью этих материалов противостоять развитию триингов типа «веер».
Итак, пероксидосшиваемые ТСПЭ и ССПЭ обладают очень схожими электрическими характеристиками и являются отличными изоляционными материалами, стойкими к возникновению и росту водных триингов [3].
Кабельные композиции на основе полиэтилена и поливинилхлорида. Тенденции развития в России
Поливинилхлоридные пластикаты и композиции на основе полиэтилена в настоящее время являются наиболее распространенными полимерными материалами, применяемыми в кабельной промышленности России и других стран СНГ. Структура потребления кабельных полимерных материалов в РФ представлена на рис. 1. Видно, что в общем объеме потребления полимерных материалов на долю ПВХ-пластикатов приходится около 61%, а на композиции полиэтилена и других полиолефинов - остальное.
Кабельные композиции на основе полиэтилена
Свойства композиций во многом определяются характеристиками основного сырья - полиэтилена, которого содержится до 99% в составе кабельных композиций. Динамика выпуска полиэтилена в России представлена на рис. 3.
Рис. 3. Структура потребления в России кабельных композиций на основе полиэтилена
В 2005 году объем производства полиэтилена в России составил 1046,8 тыс. т, в том числе полиэтилена высокой плотности (ПЭВП) - 484,6 тыс. т, полиэтилена низкой плотности (ПЭНП) - 562,2 тыс. т. На кабельные композиции в России приходится около 6-7% от общего объема производства полиэтилена. В отечественной кабельной промышленности традиционно используются композиции на основе полиэтилена низкой и высокой плотности. Наиболее широко эти композиции применяются для производства кабелей связи, силовых кабелей, кабелей для питания погружных электронасосов добычи нефти и т.д.
Основными изготовителями кабельных композиций в течение многих десятилетий являются такие мощные предприятия, как ОАО «Казаньоргсинтез» (ПЭНП, ПЭВП), ОАО «Уфаоргсинтез» (ПЭНП), ООО «Ставролен» (ПЭВП). В последнее время в России появились и другие предприятия - небольшие производства кабельных композиций, оснащенные новейшим импортным смесительным оборудованием.
В России преимущественно применяются кабельные композиции на основе ПЭНП (см. рис. 3). Характеристики выпускаемых композиций регламентируются требованиями ГОСТ 16336-77 и ряда технических условий, согласованных с ОАО «ВНИИКП».
К сожалению, в России отсутствует производство композиций на основе линейного полиэтилена, который широко используется в кабельном производстве в зарубежной практике. Кроме того, в рецептуры композиций, выпускаемых по ГОСТУ, не введены дезактиваторы меди, а марочный ассортимент выпускаемых композиций недостаточен.
В последние годы расширяется потребность в следующих специальных композициях, необходимых для выпуска современных кабельных изделий: - силанольносшиваемых;
- для физического и химического вспенивания;
- для перекисной сшивки;
- безгалогенных пониженной горючести.
С учетом изложенного основные направления развития работ в России в области кабельных композиций на основе полиэтилена могут быть сформулированы следующим образом.
1. Разработка и освоение производства широкой серии кабельных композиций на основе линейного полиэтилена.
2. Разработка и освоение кабельных композиций с использованием расширенного ассортимента марок базового полиэтилена новых производств.
3. Повышение технического уровня композиций полиэтилена за счет использования стабилизаторов нового поколения. В рецептурах композиций полиэтилена, выпускаемых по ГОСТ 16336-77, не предусмотрено применение дезактиваторов меди, широко используемых за рубежом. Применение дезактиваторов меди снижает каталитическое воздействие меди на термоокислительную деструкцию полиэтилена, позволяет повысить стойкость к растрескиванию полиэтилена и ресурс кабелей.
4. Разработка и освоение промышленного производства полиолефиновых безгалогенных композиций пониженной горючести.
5. Разработка и освоение промышленного производства силанольносшиваемых композиций полиэтилена. Применение этих материалов позволит получить также сшитые структуры, придающие изоляции или оболочке улучшенные эксплуатационные свойства (более высокую рабочую температуру, стойкость к токам короткого замыкания и т.д.).
6. Разработка и освоение производства композиций полиэтилена для химического и физического вспенивания. В связи с техническим перевооружением кабельных предприятий и производством кабельных изделий с использованием вспененной изоляции (LAN-кабели, телефонные и радиочастотные кабели) потребность в таких композициях будет возрастать. Благодаря своим преимуществам композиции для физического вспенивания в перспективе будут превалировать. Предприятиями химической промышленности России освоено производство только композиций для химического вспенивания марки 107-ВК для использования в качестве изоляции городских телефонных кабелей. Что касается композиций для физического вспенивания, то в настоящее время ОАО «ВНИИКП» совместно с рядом химических предприятий планируют завершение разработки и освоение производства широкой гаммы таких композиций.
Поливинилхлоридные кабельные пластикаты
Поливинилхлоридные (ПВХ) пластикаты продолжают оставаться самыми крупнотоннажными полимерными материалами, применяемыми в отечественной кабельной промышленности. В 2005 году в России было выпущено около 135 тыс. т кабельных ПВХ-пластикатов. Динамика выпуска ПВХ-пластикатов представлена на рис. 4. Особенностью отечественного рынка ПВХ-пластикатов является то, что доля потребляемого кабельного ПВХ-пластиката составляет около 70% от общего объема потребления ПВХ, в то время как в мире для производства кабельных изделий используется в среднем не более 10% пластикатов. С учетом этого к кабельному сектору рынка пластикатов проявляется повышенный интерес производителей этих материалов.
Потребности кабельных предприятий в большей мере удовлетворяются за счет отечественного производства, сосредоточенного в основном на четырех предприятиях, которые покрывают примерно 80% потребности кабельной промышленности (ОАО «Владимирский химический завод»; ЗАО «Каустик», г. Стерлитамак; ОАО «Капролактам», г. Дзержинск; ОАО «Саянскхимпласт», г. Саянск). Мощности по выпуску ПВХ-пластикатов кабельного назначения в России примерно в 2 раза превышают потребности. Сдерживающими факторами являются временами возникающие дефициты ПВХ-смолы и пластификаторов отечественного производства.
Наиболее динамично развивается производство пластикатов пониженной горючести. Если ранее для производства кабелей, не распространяющих горение, выпускались только две марки ПВХ-пластикатов пониженной горючести (НГП 40-32 и НГП 30-32), то в настоящее время промышленностью (фирма «Проминвест-пластик», Украина, и ОАО «Владимирский химический завод», Россия) освоено производство нового поколения пластикатов пониженной пожарной опасности, разработанных совместно ОАО «ВНИИКП» и фирмой «Проминвест-пластик». Благодаря своим преимуществам по сравнению с пластикатами типа НГП (более высокая способность противостоять горению, низкая дымообразующая способность, низкая эмиссия хлористого водорода, более широкий марочный ассортимент) эти пластикаты уже активно используются при производстве кабелей типа «нг-LS» и «нг-FRLS» и их об