Проект рулевого привода для малогабаритных летательных аппаратов, полет которых происходит в плотных слоях атмосферы. Технические требования к составным частям автоколебательной системы рулевого привода. Конструкции и принцип действия рулевого привода.
Аннотация к работе
4.2 Составление и расчет сетевого графика5. Охрана труда5.2 Анализ вредных и опасных факторов при расчете и проектировании замкнутой системы ВДРП 5.3 Меры по недопущению вредных и опасных факторовПо функциональному назначению входящие в систему управления ЛА устройства можно разбить на три группы: устройства формирования управляющего воздействия с сигнала управления; рулевые приводы, приводящие органы управления в действие в соответствии с управляющим воздействием. Рулевые приводы осуществляют в системе управления функциональную взаимосвязь между устройствами первой и второй групп. Поэтому наряду с функциональными элементами, обеспечивающими создание силового воздействия на органы управления (источники питания, кинематически связанные с органами управления исполнительные двигатели, элементы энергетических магистралей), рулевые приводы включают функциональные элементы, которые устанавливают соответствие этого силового сигнала формируемому в системе управления управляющему сигналу (преобразователи и усилители электрических сигналов, электромеханические преобразователи, различного вида датчики). Управляющую систему составляют функциональные элементы рулевого привода, которые обеспечивают изменение регулируемой величины (координаты положения органов управления) по заданному или выработанному в процессе полета ЛА закону управления.Приводы лопастей предназначены для преобразования электрических сигналов управления в механическое перемещение лопастей, жестко связанных с подвижными частями исполнительного двигателя. Исполнительный двигатель преодолевает при этом действующие на лопасть шарнирные нагрузки, обеспечивая необходимую скорость и необходимое ускорение при обработке заданных выходных сигналов с требуемой динамической точностью. На базе уже существующих конструкций приводы могут быть классифицированы: по типу силовой системы: воздушно - динамические; по принципу управления лопастями: релейное двух и трехпозиционное управление;Рулевой привод предназначен для преобразования электрических сигналов, поступающих с наземной аппаратуры управления, в соответствующие угловые отклонения аэродинамических рулей, управляющих полетом летательных аппаратов. При сравнении характеристик различных типов и схем рулевых приводов отмечено, что при заданных шарнирных нагрузках и требуемых динамических характеристиках целесообразно для обеспечения минимальных габаритов и массы летательного аппарата применение пропорционального рулевого привода, использующего в качестве рабочего тела скоростной напор встречного потока воздуха. В этом случае исчезает необходимость размещения специального источника питания. Для малогабаритных управляемых ракетных снарядов наиболее часто проектируются воздушно-динамические рулевые привода, обладающие рядом преимуществ: · независимость массы и объема рулевого привода от времени работы, так как отсутствует специальный источник питания; Для сравнения характеристик различных типов приводов приведем следующую таблицу: Таблица 1.1 Сравнительная характеристика различных типов приводовРули складываются внутрь отсека. РП работает от скоростного напора воздуха. Зависимость избыточного давления Ри на входе воздухозаборника от времени при различных температурах окружающей среды представлена на рис. Зависимость избыточного давления Ри на входе воздухозаборника от времени t. 1.3 Зависимость частоты вращения ракеты от времени t шарнирных моментах, представленных на рис.Состояние физического тела (однородного газа) в некотором проточном объеме в каждый момент времени характеризуется совокупностью следующих параметров: давление ; Для этого газа, полагая его идеальным, справедливо уравнение состояния: Из этого уравнения следует, что независимых величин, характеризующих состояние газа в проточной полости, две. В термодинамике для их определения используется два закона: закон сохранения энергии; Это позволяет разбить уравнение нелинейной нестационарной модели привода на две группы уравнений: уравнения с медленно меняющимися координатами; Нелинейная математическая модель получена на основе законов сохранения массы и энергии и включает в себя следующие уравнения: для полости ресивера: для рабочих полостей (i=1,2): для полости отсека: Законы сохранения массы можно записать в следующем виде: для полости ресивера: для рабочих полостей (i=1,2): ;Необходимо спроектировать рулевой привод, обеспечивающий воспроизведение управляющих сигналов в полосе частот от 28 с-1 до 91 с-1 и амплитуд до 15° угла поворота рулей с фазовым сдвигом 15°±13°. Габариты и масса РП существенно зависят от потребной выходной мощности и определяются применяемыми типом и структурой системы привода. Для пропорционального закона управления рулевыми органами наименьшие габариты обеспечиваются при применении автоколебательной системы привода с двухпозиционным управлением (рис. Для воздушно-динамического привода характерно согласование действующих шарнирных нагрузок с развиваемым приводом моментом, а также скорости вращения по крену со скоростью перемещения рул
План
Содержание
Введение
1. Основная часть
1.1 Классификация приводов
1.2 Обоснование выбора типа привода
1.3 Технические требование к рулевому приводу
1.4 Математическое описание функционирования воздушно-динамического привода
1.5 Разработка рулевого привода
1.6 Оценка влияния изменения параметров математической модели ВДРП на его характеристики
1.7 Проектирование управляющего электромагнита
1.8 Технические требования к составным частям автоколебательной системы рулевого привода
2. Конструкторская часть
2.1 Описание конструкции рулевого привода
2.2 Описание принципа действия рулевого привода
3. Технологическая часть
3.1 Теоретические сведения
3.2 Определение последовательности сборочного процесса
3.3 Построение схемы технологического процесса сборки
4. Экономика
Введение
4.2 Составление и расчет сетевого графика
Вывод
5. Охрана труда
Список литературы
Введение
В настоящее время к разработке приводов для малогабаритных управляемых ракет (МУР) предъявляются все более жесткие требования по техническим и эксплуатационным характеристикам. Поэтому процесс создания перспективных МУР должен основываться не только на усовершенствовании ранее разработанных конструкций и схем реализации приводов, но и на поиске новых технических решений, отличающихся от традиционных и дающих очередной скачок в развитии данного вида техники. Таким принципиально новым решением оказалось создание и использование так называемых воздушно-динамических рулевых приводов (ВДРП).
Ранее применяемые рулевые привода традиционной конструкции со специальным источником питания обладают следующими недостатками: во-первых, они обеспечивают мощность источников на уровне максимально потребной, что необходимо только лишь на определенном участке полета; во-вторых, при повышении дальности и времени полета масса источника питания увеличивается. Ужесточающиеся массогабаритные характеристики не позволяют реализовать традиционные привода со специальными системами согласования мощности привода с мощностью, расходуемой на управление. Поэтому рациональным решением явился отказ от специального источника питания и использование для перемещения рулевых органов энергии движения ракеты в газовой среде, т.е. использование энергии обтекающего корпус ракеты воздушного потока.
Основой данного технического решения является процесс трансформации энергии двигательной установки, сообщающей ракете кинетическую энергию движения. В результате движения на корпусе ракеты возникает распределенное поле давлений, определяющее силу ее лобового сопротивления в обтекающем ракету потоке воздуха. Располагая устройства забора и сброса воздуха на корпусе в зонах соответственно повышенного или пониженного давления, формируют рабочий поток определенной мощности, при этом в соответствии с законом сохранения энергии возрастает коэффициент лобового сопротивления. Последнее, при использовании воздушно-динамических рулевых приводов требуется увеличение массы пороховой шашки двигательной установки для сохранения неизменными времени полета и величины конечной скорости. Однако анализ соотношения масс показывает, что эффективность данного технического решения по сравнению с рулевыми приводами, имеющими специальный источник питания, тем выше, чем больше максимальная скорость и время управляемого участка полета по сравнению со временем работы двигательной установки. При этом достигается уменьшение массы пассивных элементов конструкции и повышение технологичности за счет исключения трудоемких элементов конструкции: аккумуляторов давления, трубопроводов и т.п. Отличительной особенностью является то, что он функционирует практически все время, пока движется ракета, а использование единого воздушного потока, нагружающего рулевые органы воздушно-динамических рулевых приводов и одновременно являющегося энергоносителем для сохранения неизменности функциональных характеристик по времени полета. Практическая реализация воздушно динамических рулевых приводов с различными типами силовых систем показала их значительное превосходство по функциональным, массогабаритным и техническо-технологическим характеристикам над приводами традиционной конструкции. Поэтому в настоящее время актуальной является проблема оснащения вновь разрабатываемых ракет приводами воздушно-динамического типа, а значит и разработки эффективных методик и алгоритмов их проектирования.