Расчет и подбор нормализованного теплообменного аппарата - Курсовая работа

бесплатно 0
4.5 107
Сущность процесса передачи энергии в форме тепла, виды теплообменных аппаратов. Подбор теплообменного аппарата на базе расчетных данных. Ход процесса охлаждения жидкости с заданным расходом, если исходными материалами являются ацетон и скважинная вода.


Аннотация к работе
В зависимости от способа передачи тепла различают две основные группы теплообменников: 1) поверхностные теплообменники, в которых перенос тепла между обменивающимися теплом средами происходит через разделяющую их поверхность теплообмена - глухую стенку; В теплообменнике одна из обменивающихся теплом сред движется внутри труб, а другая - в межтрубном пространстве. Определим расход исходного вещества : С учетом потерь теплоты в размере 5% , тепловая нагрузка составит : Расход воды составит : Объемные расходы исходного вещества и воды : 0,00546 Вариант №1: D = 273 мм, n =37 , z =1 и F=9 м2 : Определим расчетное значение площади поверхности теплообмена и рассчитаем запас поверхности теплообмена у теплообменного аппарата данного типа. для воды: Коэффициент теплопередачи: Поверхностная плотность теплового потока: Расчетная площадь поверхности теплообмена: Запас поверхности составляет при этом: Запас поверхности теплообмена данного аппарата удовлетворяет условию.

План
Содержание

Аннотация

Введение

Общая часть

1. Определение расхода теплоты и расхода воды

2. Приблизительная оценка

Расчет и подбор теплообменных аппаратов

Вариант №1: D = 273мм, n = 37, z =1 и F = 9

Вариант №2: D = 325мм, n = 56, z =2 и F = 13

Расчет нагрузочной характеристики

Заключение

Приложение №1

Приложение №2

Список используемой литературы

Аннотация

Введение
теплообменный аппарат ацетон

В зависимости от способа передачи тепла различают две основные группы теплообменников: 1) поверхностные теплообменники, в которых перенос тепла между обменивающимися теплом средами происходит через разделяющую их поверхность теплообмена - глухую стенку;

2) теплообменники смешения, в которых тепло передается от одной среды к другой при их непосредственном соприкосновении.

Теплообменники и холодильники могут устанавливаться горизонтально и вертикально, быть одно-, двух-, четырех- и шестиходовыми по трубному пространству. Трубы, кожух и другие элементы конструкции могут быть изготовлены из углеродистой или нержавеющей стали, а трубы холодильников - также и из латуни. Распределительные камеры и крышки холодильников выполняют из углеродистой стали.

Кожухотрубчатые конденсаторы предназначены для конденсации паров в межтрубном пространстве, а также для подогрева жидкостей и газов за счет теплоты конденсации пара. Они могут быть с неподвижной трубчатой решеткой или с температурным компенсатором на кожухе, также вертикальные и горизонтальные. От холодильников они отличаются большим диаметром штуцера для подвода пара в межтрубное пространство.

В кожухотрубчатых испарителях в трубном пространстве кипит жидкость, а в межтрубном пространстве может быть жидкий, газообразный, парообразный, парогазовый или парожидкостной теплоноситель. Эти теплообменники могут быть только вертикальные, с неподвижной трубной решеткой или с температурным компенсатором на кожухе.

В работе используется кожухотрубчатый теплообменник. Кожухотрубчатые теплообменные аппараты могут использоваться в качестве теплообменников, холодильников, конденсаторов и испарителей. Этот теплообменник относится к числу наиболее часто применяемых поверхностных теплообменников. В теплообменнике одна из обменивающихся теплом сред движется внутри труб, а другая - в межтрубном пространстве. Среды обычно направляются противоположно друг другу. При этом нагреваемую среду направляют снизу вверх, а среду, отдающую тепло, - в противоположном направлении. Такое направление движения каждой среды совпадает с направлением, в котором стремится двигаться данная среда под влиянием изменения ее плотности при нагревании или охлаждении.

Конструкции теплообменников должны отличаться простотой, удобством монтажа и ремонта. В ряде случаев конструкция теплообменника должна обеспечивать возможно меньшее загрязнение поверхности теплообмена и быть легко доступной для осмотра и очистки.

Конденсация ацетона водой

Примем следующие индексы: «1» - для ацетона

«2» - для воды

Общая часть

1. Определим расход теплоты и расход воды на охлаждение ацетона

Примем температуру ацетона на входе в теплообменник равной тн1 = 56 0С. Конечная температура ацетона, по условию задания, равной 36 0С. Вода подается в теплообменник с начальной температурой тн2 = 17 0С. Конечная температура равна тн2 = 27 0С.

- средняя температура воды: 0С

Данным условиям соответствуют следующие физико-химические показатели воды: С2 = 4231,9 Дж/(кг К) - теплоемкость этилацетата (стр. 562, рис. XI, [1]);

?2 = 0,593 Вт/(м К) - коэф. теплопроводимости (стр. 561, рис. X, [1]);

?2 = 998 кг/м3 - плотность этилацетата (стр. 512, т. IV, [1]);

?2 = 1 10-3 Па с - коэф. динамической вязкости (стр. 516, т. IX, [1]).

- среднюю логарифмическую разность температур: 56>36

27<17

290С 190С

Т.к. , используется формула:



Расчет - температурного коэффициента:

где при , , тогда ,

тогда 0С

- среднюю температуру исходного вещества: 0С

Данным условиям соответствуют следующие физико-химические показатели ацетона: с1 = 2304,5 Дж/(кг К) - теплоемкость этилацетата (стр. 562, рис. XI, [1]);

?1 = 0,163 Вт/(м К) - коэф. теплопроводимости (стр. 561, рис. X, [1]);

?1 = 762,5 кг/м3 - плотность этилацетата (стр. 512, т. IV, [1]);

?1 = 0,257 10-3 Па с - коэф. динамической вязкости (стр. 516, т. IX, [1]).

Определим расход исходного вещества :

С учетом потерь теплоты в размере 5% , тепловая нагрузка составит :

Расход воды составит :

Объемные расходы исходного вещества и воды : 0,00546

0,00477

2. Наметим варианты теплообменных аппаратов

Для этого определим ориентировочное значение площади поверхности теплообмена, принимая (стр. 47, т. 2.1, [2]) :

Для более интенсивного теплообмена необходим аппарат с турбулентным режимом течения теплоносителей. Направим в трубное пространство воду, а в межтрубное пространство - ацетон. Также для наиболее эффективного теплообмена необходимо, чтобы трубы в аппарате располагались в шахматном порядке.

В теплообменниках с диаметром труб по ГОСТУ 15120-79 скорость течения исходного вещества при должна быть более : 0,525

При этом число труб в аппарате обеспечивающих объемный расход исходного вещества при турбулентном режиме течения: 31,1=31 шт.

Расчет и подбор теплообменных аппаратов

Вариант №1: D = 273 мм, n =37 , z =1 и F=9 м2 : Определим расчетное значение площади поверхности теплообмена и рассчитаем запас поверхности теплообмена у теплообменного аппарата данного типа.

Размер стрелки сегмента: мм

Расстояние между перегородками: мм

Где

Определим скорость и критерий Рейнольдса для исходного вещества :

36847

Для воды:

Определим коэффициенты теплоотдачи: - для воды: Теплоотдача течении в прямых трубах и каналах ( ), критерий Нуссельта рассчитывается по формуле (см. стр. 152, (4.17), [1])

?l = 1 - поправочный коэффициент, учитывающий влияние на коэффициент теплоотдачи отношения длины трубы к ее диаметру.

Откуда

Рассчитаем критерий Прандтля:

Тогда по формуле: 62,78

Принимаем значение = 1.

Коэффициент теплоотдачи : 1773

- для ацетона: Рассчитаем критерий Прандтля: 3,633

Приняв .

Коэффициент теплоотдачи : 1299

Применительно к кожухотрубчатым теплообменникам с поперечными перегородками в формуле принимают коэффициент , учитывая, что теплоноситель в межтрубном лишь часть пути движется поперек труб и при угле атаки меньшем 900.

Примем тепловую проводимость загрязнений стенки со стороны воды равной (табл. 2.2, [2]), коэффициент теплопроводимости стали равной (табл. XXVIII, [1]), тепловую проводимость загрязнений стенки со стороны исходного вещества равной (табл. 2.2, [2]).

Тогда

Коэффициент теплоотдачи рассчитаем по формуле:

Поверхностная плотность теплового потока :

Расчетная площадь поверхности теплообмена составит : 14,5

Запас поверхности составляет при этом:

Запас поверхности теплообмена данного аппарата не удовлетворяет условию. По аналогичной схеме рассчитаем другой вариант.

Вариант №2

D =325 мм, n =56 , z =2 и F = 13 : Определим скорости и критерии Рейнольдса: - для исходного вещества:

- для воды: Определим коэффициенты теплоотдачи: - для ацетона:

- для воды:

Коэффициент теплопередачи:

Поверхностная плотность теплового потока:

Расчетная площадь поверхности теплообмена:

Запас поверхности составляет при этом:

Запас поверхности теплообмена данного аппарата удовлетворяет условию.

Расчет нагрузочной характеристики

Примем следующий интервал температур стенки со стороны горячего теплоносителя: T1 = / 25 30 40 50 55/ 0С

Данным температурам соответствуют следующие физико-химические показатели исходного вещества: с1.1 =2220,7 Дж/(кг К) - теплоемкость при тст =25 0C;

с1.2 = 2258,41 Дж/(кг К) - теплоемкость при тст =30 0C;

с1.3 = 2283,55 Дж/(кг К) - теплоемкость при тст =40 0C;

с1.4 =2308,69 Дж/(кг К) - теплоемкость при тст = 50 0C;

с1.5 =2342,21 Дж/(кг К) - теплоемкость при тст =55 0C;

?1.1 =0,169 Вт/(м К) ?1.1 = 785,3 кг/м3 ?1.2 =0,167 Вт/(м К) ?1.2 = 779,5 кг/м3 ?1.3 = 0,165 Вт/(м К) ?1.3 =768 кг/м3 ?1.4 =0,163 Вт/(м К) ?1.4 = 757 кг/м3 ?1.5 =0,162 Вт/(м К) ?1.5 = 751,5 кг/м3 ?1.1 = 0,3075 10-3 Па с ?1.2 =0,293 10-3 Па с ?1.3 = 0,268-3 Па с ?1.4 = 0,246 10-3 Па с ?1.5 = 0,476 10-3 Па с

Скорость исходного вещества равна:

Критерии Рейнольдса и Прандтля:

24209,73

26077,6

28002,85

14366,9

3,96

3,71

3,48

6,88

Значение Nu рассчитываем по формуле:

166,6

170

145,54

Коэффициент теплоотдачи рассчитаем по формуле:

1090

1100

1108

943,1

Плотность теплового потока

6597,4

-4433,7

-8487,8

Определим температуру стенки со стороны холодного теплоносителя - воды:

Данным температурам соответствуют следующие физико-химические показатели воды: с2.1 = 4231,9 Дж/(кг К) - теплоемкость воды при тст = 240C;

с2.2 = 4252,9 Дж/(кг К) - теплоемкость воды при тст = 29,250C;

с2.3 = 4273,8 Дж/(кг К) - теплоемкость воды при тст = 39,70C;

с2.4 = 4315,7 Дж/(кг К) - теплоемкость воды при тст = 50,20C;

с2.5 = 4336,7 Дж/(кг К) - теплоемкость воды при тст = 55,40C;

?2.1 = 0,611 Вт/(м К) ?2.1 = 993,5 кг/м3 ?2.2 = 0,616 Вт/(м К) ?2.2 = 995кг/м3 ?2.3 = 0,637 Вт/(м К) ?2.3 = 992 кг/м3 ?2.4 = 0,645 Вт/(м К) ?2.4 = 987,5 кг/м3 ?2.5 = 0,651 Вт/(м К) ?2.5 = 985,3 кг/м3 ?2.1 = 0,9 10-3 Па с ?2.2 = 0,801 10-3 Па с ?2.3 = 0,656 10-3 Па с ?2.4 = 0,549 10-3 Па с ?2.5 = 0,509 10-3 Па с

Скорости воды:

Критерии Рейнольдса и Прандтля считаем аналогично:

Значение Прандтля:

Т.к. все значения Re>10000, то значение Nu:

Коэффициент теплоотдачи:

Плотность теплового потока:

Далее строим графики зависимости и . Совмещенные кривые отображают нагрузочную характеристику теплообменного аппарата. Для установившегося процесса теплопередачи должно соблюдаться условие q1 = q2, поэтому точка пересечения кривых определяет действительную плотность теплового потока и действительную температуру на поверхности стенки со стороны горячего теплоносителя. Зная эту температуру можно с помощью критериальных уравнений вычислить значения коэффициентов теплоотдачи и рассчитать величину коэффициента теплопередачи.

Данной температуре (Т=29) соответствуют следующие физико-химические показатели: - для исходного вещества: с1 = 2258,4 Дж/(кг К) - теплоемкость (стр. 562, рис. XI, [1]);

?1 =0,167 Вт/(м К) - коэф. теплопроводимости (стр. 561, рис. X, [1]);

?1 =779,5 кг/м3 - плотность (стр. 512, т. IV, [1]);

?1 = 0,293 10-3 Па с - коэф. динамической вязкости (стр. 516, т. IX, [1]).

- для воды: с2 = 4232,9 Дж/(кг К) - теплоемкость (стр. 562, рис. XI, [1]);

?2 =0,616 Вт/(м К) - коэф. теплопроводимости (стр. 561, рис. X, [1]);

?2 =995 кг/м3 - плотность (стр. 512, т. IV, [1]);

?2 = 0,801 10-3 Па с - коэф. динамической вязкости (стр. 516, т. IX, [1]).

Рассчитаем значения Re и Pr:

Коэффициент теплоотдачи:

Коэффициент теплопередачи:

Погрешность расчета:

Заключение

Для достижения поставленной цели в данной семестровой работе рассматривались только нормализованные теплообменные аппараты (холодильники), без рассмотрения экономических факторов, таких как: металлоемкость, себестоимость, вес и т.п.

В процессе приблизительной оценки были рассмотрены нормализованные теплообменные аппараты с внутренним диаметром кожуха 400мм, 600мм и 800мм. Запас поверхности теплообмена, у теплообменника с внутренним диаметром кожуха 800мм, не удовлетворял исходным требованиям, и в дальнейшем расчете нагрузочной характеристики не рассматривался. При рассмотрении теплообменных аппаратов с внутренним диаметром кожуха 400мм и 600мм, запас поверхности теплообмена составил, соответственно, 9,7% и 5%.

Далее рассчитывалась нагрузочная характеристика аппаратов. Вследствие чего, теплообменный аппарат, с внутренним диаметром кожуха 600мм, имел высокую ошибку при расчете коэффициента теплопередачи (свыше 10%), что не удовлетворяет условию задачи.

Всем требуемым условиям соответствует двухходовой нормализованный кожухотрубчатый теплообменный аппарат с внутренним диаметром кожуха 400мм, в количестве 2шт.

Приложение №1

Диаметр кожуха внутренний D, мм Число труб n Длина труб l, мм Проходное сечение, м2 np h, мм

1,0 1,5 2,0 3,0 4,0 6,0 9,0 St102 Sm102 Sв.п.102

Поверхность теплообмена F, мм

Одноходовые

159* 13 1,0 1,5 2,0 3,0 - - - 0,5 0,8 0,4 5 100

273* 37 3,0 4,5 6,0 9,0 - - - 1,3 1,1 0,9 7 130

325* 62 - 7,5 10,0 14,5 19,5 - - 2,1 2,9 1,3 9 180

400 111 - - 17 26 35 52 - 3,8 3,1 2,0 11 250

600 257 - - 40 61 81 121 - 8,9 5,3 4,0 17 300

800 465 - - 73 109 146 219 329 16,1 7,9 6,9 23 350

1000 747 - - - 176 235 352 528 25,9 14,3 10,6 29 520

1200 1083 - - - - 340 510 765 37,5 17,9 16,4 35 550

Двухходовые

325* 56 - 6,5 9,0 13,0 17,5 - - 1,0 1,5 1,3 8 180

400 100 - - 16,0 24,0 31,0 47 - 1,7 2,5 2,0 10 250

600 240 - - 38 57 75 113 - 4,2 4,5 4,0 16 300

800 442 - - 69 104 139 208 312 7,7 7,0 6,5 22 350

1000 718 - - 169 226 338 507 12,4 13,0 10,6 28 520

1200 1048 - - 329 494 740 17,9 16,5 16,4 34 550

Четырехходовые

600 206 - - 32 49 65 97 - 1,8 4,5 4,0 14 300

800 404 - - 63 95 127 190 285 3,0 7,0 6,5 20 350

1000 666 - - - 157 209 314 471 5,5 13,0 10,6 26 520

1200 986 - - - - 310 464 697 8,4 16,5 16,4 32 550

Шестиходовые

600 196 - - 31 46 61 91 - 1,1 4,5 3,7 14 300

800 384 - - 60 90 121 181 271 2,2 7,0 7,0 20 350

1000 642 - - - 151 202 302 454 3,6 13,0 10,2 26 520

1200 958 - - - - 301 451 677 5,2 16,5 14,2 32 550

* Наружный диаметр кожуха np - число рядов по вертикали для горизонтальных аппаратов - по ГОСТ 15118-79;

h - расстояние между перегородками

Приложение №2

Список литературы
1. К.Ф. Павлов, П.Г. Романков, А.А. Носков «Примеры и задачи по курсу процессов и аппаратов химической технологии», 10-ое издание, переработанное и дополненное. Под ред. П.Г. Романтшва. Л.: Химия, 1987.-576С.

2. «Основные процессы и аппараты химической технологии»: Пособие по проектированию / Г.С. Борисов, В.П. Брыков, Ю.И. Дытнерский и др. Под ред. Ю.И. Дытнерского, 2-ое издание, переработанное и дополненное М.: Химия, 1991.-496С.

3. А.Г. Касаткин «Основные процессы и аппараты химической технологии». М.: Химия, 1971.-784С.

Размещено на
Заказать написание новой работы



Дисциплины научных работ



Хотите, перезвоним вам?