Картина распределения атомный электростанций по странам мира. Краткая характеристика радиационно-опасного объекта. Радиоактивные выбросы в окружающую среду. Последствия для населения и территорий. Методы ликвидации последствий аварий, дезактивация.
Аннотация к работе
С того времени атомные технологии совершили большой рывок в развитии, открывая миру новые перспективы в основном в области снабжения электроэнергией как крупного производства, так и большей части населения страны. Так, например, последствия аварии на Чернобыльской АЭС, произошедшей более двадцати лет назад (1986 г), сказываются до сих пор (загрязнено большое количество почв в Украине, Белоруссии, Европе, увеличилось количество заболевших раком, загрязнен воздух, вода, нанесен колоссальный экономический ущерб странам, подвергшимся загрязнению радиоактивными выбросами). В обычных условиях радиационная обстановка в стране определяется, во-первых, природной радиоактивностью, включая космические излучения; во-вторых, радиоактивным фоном обусловленным проведенными с 1945 по 1989 г. не менее 1820 испытаниями ядерного оружия; в-третьих, наличием территорий, загрязненных радиоактивными веществами вследствие произошедших в предыдущие годы аварий на предприятиях атомной промышленности и энергетики; в-четвертых, эксплуатацией ядерно-и радиационно - опасных объектов. Но станция будет безопасна, если в любом случае, при любой аварии радиоактивность не выйдет за пределы защитных сооружений. Если в реакторе имеется вода, то в случае такой аварии она будет разлагаться на водород и кислород, что приведет к взрыву гремучего газа в реакторе и достаточно серьезному разрушению не только реактора, но и всего энергоблока с радиоактивным заражением местности.Итак, при правильном использовании и соблюдении всех мер безопасности, а также при безопасном захоронении отходов, атомные реакторы являются наиболее экологичным и перспективным методом получения энергии, поэтому отказаться от него или сократить его применение не представляется возможным.
Введение
В первой половине двадцатого века мир столкнулся с новой технологией, связанной с атомной энергией. С того времени атомные технологии совершили большой рывок в развитии, открывая миру новые перспективы в основном в области снабжения электроэнергией как крупного производства, так и большей части населения страны. В настоящее время в мире эксплуатируется 442 атомных энергоблока общей мощностью около 369 МВТ. Картина распределения АЭС по странам мира проиллюстрирована данными на 15/06/2006 службы информации по энергетическим реакторам - PRIS (Power Reactor Information Service) на рис.1. Серьезно рассматривают развитие атомной энергетики страны, не имеющие собственной атомной генерации: Италия, Польша, Белоруссия, Турция, Египет, Марокко, Казахстан, Чили, Нигерия, Бангладеш, Индонезия, Вьетнам, Таиланд, Австралия, Новая Зеландия.
Рис. 1
Однако помимо перспектив в научно-технической и экономической областях, атомные технологии таят в себе чрезвычайную опасность для экологии всей планеты. Так, например, последствия аварии на Чернобыльской АЭС, произошедшей более двадцати лет назад (1986 г), сказываются до сих пор (загрязнено большое количество почв в Украине, Белоруссии, Европе, увеличилось количество заболевших раком, загрязнен воздух, вода, нанесен колоссальный экономический ущерб странам, подвергшимся загрязнению радиоактивными выбросами).
1. Источники опасности
1.1 Краткая характеристика РОО
В настоящее время практически в любой отрасли народного хозяйства и науки во все более возрастающих масштабах используются радиоактивные вещества и источники ионизирующих излучений. Особенно высокими темпами развивается ядерная энергетика. Атомная наука и техника таят в себе огромные возможности, но вместе с тем и большую опасность для людей и окружающей среды.
Ядерные материалы приходится возить, хранить, перерабатывать, что создает дополнительный риск радиоактивного загрязнения окружающей среды, поражения людей, животных и растительного мира.
Радиационно-опасный объект (РОО) - предприятие, на котором при авариях могут произойти массовые радиационные поражения.
Среди техногенных источников ЧС наибольшую опасность по тяжести поражения, масштабам и долговременности действия поражающих факторов представляют радиационные катастрофы. В обычных условиях радиационная обстановка в стране определяется, во-первых, природной радиоактивностью, включая космические излучения; во-вторых, радиоактивным фоном обусловленным проведенными с 1945 по 1989 г. не менее 1820 испытаниями ядерного оружия; в-третьих, наличием территорий, загрязненных радиоактивными веществами вследствие произошедших в предыдущие годы аварий на предприятиях атомной промышленности и энергетики; в-четвертых, эксплуатацией ядерно- и радиационно - опасных объектов.
Основная часть производства электроэнергии приходится на тепловые электростанции (ТЭС) - 60%, для чего расходуется 211 млн. тонн условного топлива, или 41% потребляемого в России газа, 14% нефти, 37% угля. Специфика экономики России такова, что основные энергоресурсы расположены в восточных регионах страны, а около 70% всего электропроизводства и потребления осуществляется в европейской части, и на доставку энергоносителей в эти районы расходуется около 20% всего добываемого топлива.
Более 75% энергии на нашей планете получается в результате переработки ископаемых топлив, при этом в атмосферу выбрасывается 21 млрд. тонн двуокиси углерода, что грозит глобальной экологической катастрофой.
Топливо-энергетический комплекс, обладает большой инертностью. Сброс производства при прекращении инвестиций происходит в течении 2-3 лет, а восстановление прежнего объема, при дополнительных вложениях, достигается лишь через 8-15 лет
Единственный путь, который может отвести угрозу энергетического кризиса в настоящее время, это использование энергии атомного ядра.
ТЭС, вырабатывая энергию, сжигает уголь, остается шлак и зола. Много золы. Экибастузская ГРЭС-1, например, за один год только в воздух выбрасывает 1 млн. 281 тыс. тонн золы, 177 тыс. тонн сернистого ангидрида, 48 тыс. тонн окислов азота. Леса, луга, вода, почва вокруг оказались загрязненными на площади 5 тыс. квадратных километров. Трава хрустит на зубах. Она как рашпиль стачивает зубы у коров и овец за 2-3 года. Подсчитано, что работа подобной ГРЭС наносит ущерб природе на такую же сумму, сколько стоит топливо, а иногда и больше. 70 млн. тонн пыли и ядовитых газов выбрасывается ежегодно в небо страны тепловыми электростанциями.
АЭС в этом отношении чисты: ни золы, ни газов. Да, выработка тепла на АЭС сопровождается выделением опасных радиоактивных веществ, ионизирующих излучений, есть проблемы захоронения отходов топлива. Но станция будет безопасна, если в любом случае, при любой аварии радиоактивность не выйдет за пределы защитных сооружений. Атомная энергия единственно реальная замена ископаемому топливу.
1.2 Основные опасности на РОО
Возможность аварии с разгоном реактора. При этом вследствие сильнейшего тепловыделения может произойти расплавление активной зоны реактора и попадание радиоактивных веществ в окружающую среду. Если в реакторе имеется вода, то в случае такой аварии она будет разлагаться на водород и кислород, что приведет к взрыву гремучего газа в реакторе и достаточно серьезному разрушению не только реактора, но и всего энергоблока с радиоактивным заражением местности.
Аварии с разгоном реактора можно предотвратить, применив специальные технологии конструкции реакторов, систем защиты, подготовки персонала.
Радиоактивные выбросы в окружающую среду. Их количество и характер зависит от конструкции реактора и качества его сборки и эксплуатации. У РБМК они наибольшие, у реактора с шаровой засыпкой наименьшие. Очистные сооружения могут уменьшить их. Впрочем, у атомной станции, работающей в нормальном режиме, эти выбросы меньше, чем, скажем, у угольной станции, так как в угле тоже содержатся радиоактивные вещества, и при его сгорании они выходят в атмосферу.
Необходимость захоронения отработавшего реактора. На сегодняшний день эта проблема не решена, хотя есть много разработок в этой области.
Радиоактивное облучение персонала. Можно предотвратить или уменьшить применением соответствующих мер радиационной безопасности в процессе эксплуатации атомной станции.
2. Последствия для населения и территорий
Рассмотрим образование поражающих факторов и их воздействие при аварии на АЭС.
1. Световое излучение и явление проникающей радиации может оказать воздействие, в основном, на работающую смену персонала.
2. Радиоактивное заражение местности в результате выбросов продуктов распада в атмосферу во всех случаях будет значительным и на больших площадях.
3. Ударная волна (сейсмическая) образуется только при ядерном взрыве реактора, при тепловом взрыве ее действие на окружающую среду незначительно.
Разберем особенности радиоактивного заражения местности при авариях на АЭС, учитывая в первую очередь опыт аварии на ЧАЭС. Источником радиоактивного заражения выбросов в атмосферу из аварийного реактора явились продукты цепной реакции. В выбросах было обнаружено 23 основных радионуклида.
В первые минуты после взрыва и образования радиоактивного облака наибольшую угрозу для здоровья людей представляли изотопы так называемых благородных газов (ксеноны), но они быстро рассеиваются в атмосфере, теряя свою активность. Таким образом, радиоактивное заражение не образуется.
В последующем воздействуют на людей коротко живущие радиоактивные компоненты, такие как Йод -131(8 суток).
Затем воздействуют на организм долгоживущие изотопы, Цезий-137 и Стронций-90 (до 30 лет).
Специалисты выделяют следующие потенциальные последствия радиационных аварий: 1. немедленные смертельные случаи и травмы среди работников предприятия и населения;
2. латентные смертельные случаи заболевания настоящих и будущих поколений, в том числе изменения в соматических клетках, приводящие к возникновению онкологических заболеваний, генетические мутации, оказывающие влияние на будущие поколения, влияние на зародыш и плод вследствие облучения матери в период беременности;
3. материальный ущерб и радиоактивное загрязнение земли и экосистем;
4. ущерб для общества, связанный с боязнью относительно потенциальной возможности использования ядерного топлива для создания ядерного оружия.
К последствиям серьезных радиационных аварий относится и наличие косвенного риска для здоровья и жизни людей. Косвенный риск возникает при непосредственном осуществлении мер безопасности, эвакуации при аварии. Например: эвакуационные мероприятия, вызванные радиационной аварией, обусловливают возникновение множества косвенных рисков: смертельные случаи вследствие дорожно-транспортных происшествий, увеличение числа сердечных приступов у эвакуируемого населения, психические травмы, вызванные стрессовой ситуацией во время эвакуации, и т.п.
3. Методы ликвидации последствий аварий на РОО радиационный объект выброс авария
Приоритетной целью ликвидации последствий радиационных аварий (ЛПА) является обеспечение требуемого уровня мер защиты населения.
Принятие решений по ликвидации последствий аварий зависит от целей и задач, определяемых каждой конкретной стадией работ.
На ранней стадии решаются следующие задачи ЛПА: 1. локализация источника аварии, т.е. прекращение выброса радиоактивных веществ в окружающую среду;
2. выявление и оценка складывающейся радиационной обстановки;
3. снижение миграции первичного загрязнения на менее загрязненные или незагрязненные участки путем локализации или удаления загрязненных фрагментов технологического оборудования, зданий и сооружений, просыпей и проливов радиоактивных веществ;
4. создание временных площадок складирования радиоактивных отходов.
На промежуточной стадии решаются следующие задачи ЛПА: 1. стабилизация радиационной обстановки и обеспечение перехода к плановым работам по ЛПА;
2. организация постоянного контроля радиационной обстановки;
3. принятие решения о методах и технических средствах ЛПА;
4. проведение плановых мероприятий по ЛПА до достижения установленных контрольных уровней радиоактивного загрязнения;
5. создание временной или стационарной системы безопасного обращения с радиоактивными отходами (локализация и ликвидация объектов первичного и вторичного загрязнений, удаление образующихся радиоактивных отходов на временные или стационарные площадки и т.д.);
6. обеспечение требуемого уровня мер защиты населения, проживающего на загрязненных территориях.
На поздней стадии решаются следующие задачи ЛПА: 1. завершение плановых работ по ЛПА и доведение радиоактивного загрязнения до предусмотренных Нормами радиационной безопасности уровней;
2. ликвидация временных площадок складирования радиоактивных отходов или организация радиационного контроля безопасности хранения на весь период потенциальной опасности;
3. обеспечение проживания населения без соблюдения мер защиты.
Основными принципами планирования работ по локализации загрязнений и ликвидации последствий аварии являются следующие: 1. оценка состава и основных форм нахождения радионуклидов загрязнения;
2. учет свойств основных типовых поверхностей территории и объектов;
3. оценка предполагаемого характера (прочности) фиксации радиоактивного загрязнения на различных поверхностях;
4. определение приоритетов (очередности) проведения работ по локализации и ликвидации загрязнений на различных объектах (участках) в зависимости от их влияния на формирование радиационной обстановки;
5. выбор наиболее эффективного и реально осуществимого способа локализации и ликвидации радиоактивного загрязнения объектов исходя из возможности имеющихся в распоряжении сил и технических средств. Локализация и ликвидация источников радиоактивного загрязнения проводится с использованием следующих основных методов: 1. Сбор и локализация высокоактивных радиоактивных материалов. Особенностью сбора и локализации высокоактивных радиоактивных материалов (осколки топливных элементов, конструкционных и защитных материалов) является, как правило, то, что точное расположение радиоактивных источников не известно, по территории они распределены случайным образом, при проведении работ возможно неожиданное "появление" источника в результате вскрытия завала или изменения места его расположения.
Проведение работ в условиях полей с высокой мощностью экспозиционной дозы (МЭД) гамма-излучения должно планироваться с максимально возможным применением средств механизации. В случае крайней необходимости привлечения ручного труда должны быть обеспечены: 1. подбор руководящего технического персонала, способного вести работы без детально разработанного плана и принимать управленческие решения по оперативной информации через средства наблюдения за работающими;
2. разработка детальных организационно-технических мероприятий по работам в зонах высоких МЭД до начала работ;
3. четкая организация рабочих мест в зоне сосредоточения персонала непосредственно перед выходом в зоны работ (места приема персонала, места надевания защитной одежды, пост дозиметрического контроля, пункт управления, места вывода персонала в зоны работ, места раздевания);
4. организация подразделений комендантской службы для поддержания установленного порядка в зоне сосредоточения;
5. преодоление психологического барьера у персонала, непосредственно выполняющего особо опасные работы (должны отбираться добровольцы);
6. постановка конкретных задач и подробный инструктаж.
Метод перепахивания грунта. Основной защитный эффект достигается за счет "разбавления" активности по толщине перепаханного слоя грунта. Характеристикой эффективности использования данного способа является коэффициент ослабления Кос, как правило, определяемый по мощности экспозиционной дозы.
Метод экранирования. Данный метод используется обычно после снятия загрязненного слоя при высоких остаточных уровнях радиоактивного загрязнения. Характеристикой эффективности так же является коэффициент ослабления Кос. На территории промплощадки аварийного объекта может широко применяться экранирование путем засыпания песком, гравием или покрытием бетоном или бетонными плитами.
Метод обваловки и гидроизоляции загрязненных участков. Используется обычно как временная мера на первых этапах работ для предотвращения "расползания" загрязнения за счет смыва осадками и для исключения попадания радиоактивных веществ в грунтовые воды. Для сильно заглубленных загрязнений могут использоваться сложные гидротехнические сооружения: "стена в грунте", "фильтрующая завеса". Применение этого метода предполагает большой объем земляных работ с привлечением инженерно-строительной техники.
Методы связывания радиоактивных загрязнений вяжущими и пленкообразующими композициями. Основными методами являются: пылеподавление и химико-биологическое задернение.
Для закрепления (химико-биологического задернения) отдезактивированных и сильно пылящих участков местности нашли применение рецептуры, содержащие в своем составе пылеподавляющие композиции (ССБ, ММ-1, латекс) в качестве основы, минеральные и органические удобрения и смеси семян многолетних злаковых и бобовых трав.
В качестве основных технических средств пылеподавления используются поливомоечные машины, войсковые авторазливочные станции, сельскохозяйственная авиация
Одной из самых эффективных мер радиационной защиты является дезактивация. Наиболее подходящими сроками проведения дезактивации, если не рассматривать необходимость ее для обеспечения безопасности при эвакуации населения или проведении неотложных аварийных работ на промплощадке аварийного объекта (предприятия), является период поздней фазы аварии. Это определяется временем, необходимым для планирования и организации дезактивационных работ, и сроками наступления относительной стабилизации радиационной обстановки, когда прекращается поступление радиоактивных веществ из источника выброса и заканчивается формирование следа радиоактивного загрязнения. Основными методами дезактивации отдельных объектов являются: а) для открытых территорий (грунта): 1. снятие и последующее захоронение верхнего загрязненного слоя грунта
2. дезактивация методом экранирования;
3. очистка методом вакуумирования;
4. химические методы дезактивации грунтов (промывка);
5. биологические методы дезактивации (естественная дезактивация);
б) для дорог и площадок с твердым покрытием: 1. смыв радиоактивных загрязнений струей воды или дезактивирующих растворов (жидкостный способ);
2. удаление верхнего слоя специальными средствами или абразивной обработкой;
3. дезактивация методом экранирования;
4. очистка методом вакуумирования;
5. сметание щетками поливомоечных машин (многократно);
в) для участков местности, покрытых лесокустарниковой растительностью
1. лесоповал и засыпка чистым грунтом после опадания кроны;
2. срезание кроны с последующим ее сбором и захоронением;
г) для зданий и сооружений: 1. обработка дезактивирующими растворами (с щетками и без них);
2. обработка высоконапорной струей воды;
3. очистка методом вакуумирования;
4. замена пористых элементов конструкций;
5. снос строении.
Вывод
Итак, при правильном использовании и соблюдении всех мер безопасности, а также при безопасном захоронении отходов, атомные реакторы являются наиболее экологичным и перспективным методом получения энергии, поэтому отказаться от него или сократить его применение не представляется возможным.
Следовательно, необходимо обеспечивать: 1. Изоляцию РОО (в том числе и ядерного оружия) от крупных городов
2. Естественную безопасность ядерных реакторов (создание надежных систем предотвращения аварий, систем оповещения, аварийных систем отключения, единой системы эвакуации персонала и населения, повышение износостойкости компонентов реактора и продуманности его конструкции)
3. Надежную охрану РОО (в том числе и ядерного оружия), ограничение доступа к РОО.
4. Разработку новых методов ликвидации последствий радиационных аварий
5. Обучение органов ликвидации и населения способам защиты от радиации, порядку эвакуации и др.
Эти и множество других мер помогут предотвратить большинство происшествий на РОО и избежать большого количества потерь при ЧС на РОО.
Список литературы
1. Лебединский А.В. Влияние ионизирующей радиации на организм. М. Знание. 1957 г.
2. Судаков А.К. Защита от радиоактивных осадков. М. Атомиздат. 1969г.
3. Гусев Н.Г. О предельно допустимых уровнях ионизирующих излучений. М. Медгиз. 1961г.
4. Тутошина Л.М. Петрова И.Д. Радиация и человек. М. Знание. 1987г.