Процессы и технологии синтеза алмазных поликристаллических композиционных материалов на основе разработанных сплавов-катализаторов Ni–X (Mo, Cr, Ti, B) - Автореферат
Разработка новых составов катализаторов, позволяющих повысить прочность, износостойкость и термостойкость алмазных поликристаллических композиционных материалов. Анализ технологии изготовления легированных катализаторов методами порошковой металлургии.
Аннотация к работе
Федеральное государственное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСИС" Автореферат диссертации на соискание ученой степени доктора технических наукРабота выполнена в Федеральном государственном образовательном учреждении высшего профессионального образования "Национальный исследовательский технологический университет "МИСИС" Официальные оппоненты: доктор технических наук профессор член корреспондент РАН, Костиков Валерий Иванович доктор физико-математических наук, профессор Бланк Владимир Давыдович доктор химических наук, профессор Спицин Борис Владимирович С диссертацией можно ознакомиться в библиотеке Федерального государственного образовательного учреждения высшего профессионального образования "Национальный исследовательский технологический университет "МИСИС"Механизмы образования поликристаллических алмазов, формирования их структуры и влияния на нее условий синтеза, состава и свойств сплава-катализатора, свойств исходного углеродного материала и других факторов до настоящего времени остаются дискуссионными. Предложен механизм формирования алмазного поликристаллического композиционного материала, основанный на том, что в процессе плавления сплава-катализатора при высоком давлении формирование фронта кристаллизации алмаза происходит за счет градиента давлений, возникающих изза объемного эффекта полиморфного превращения графита в алмаз, что приводит к инфильтрации расплава по внутренним межкристаллитным каналам и по поверхности растущего композита, значимость вклада каждого из которых определяется давлением синтеза. Обнаружено образование промежуточных фаз (лонсдейлита) при синтезе алмазного поликристаллического композиционного материала в области термодинамической стабильности алмаза при полиморфном превращении графита в алмаз, которое протекает как в жидкой, так и твердой фазах и определяется структурными свойствами графита. В первой главе рассмотрено современное состояние методов получения углеродных материалов, их термодинамические и структурные свойства, термодинамические основы синтеза алмазных материалов (порошков и поликристаллов), сформулированы требования к камерам высокого давления для синтеза алмазных поликристаллических композиционных материалов. Четвертая глава содержит результаты исследований по влиянию термодинамических условий синтеза и химического состава катализатора на свойства АПКМ, результаты изучения адгезионных свойств сплавов-катализаторов и их влияние на процесс образования алмазного композита.Если содержание легирующего металла в сплаве-катализаторе выше количества, соответствующего его предельной растворимости в сплаве Х20Н80, то увеличение прочности композитов не наблюдается, а в случае, если легирующим металлом является титан, то наблюдается снижение его прочности. Термостойкость можно разделить на два больших класса по причинам ухудшения свойств при нагреве: изза графитизации и окисления алмазной составляющей и снижения механических свойств без изменения массы алмаза изза возникновения в алмазе трещин и разупрочнения металлической связки. Введение бора в катализатор Х20Н80 приводит к дальнейшему повышению стойкости алмаза к окислению (Dm/m снижается до 12%). Повышение содержания углерода в катализаторе Х20Н80 ведет к снижению стойкости алмаза к окислению (Dm/m достигает 33 %). Алмазные порошки АРК4, полученные из АПКМ, синтезированных при начальном давлении 8,0 ГПА с катализатором - сплавом Х20Н80М, после химической обработки с различным содержанием металлической фазы подвергали изотермической выдержке при определенной температуре в течение 5 минут на воздухе, а затем эти алмазные порошки подвергали испытанию на прочность.Предложен механизм формирования алмазного поликристаллического композиционного материала, основанный на том, что в процессе нагрева при высоком давлении сплав-катализатор переходит в жидкое состояние и формирует фронт кристаллизации алмаза, который перемещается от межфазной поверхности сплава-катализатора и графита к периферии исходного графита. Движущей силой проникновения расплава катализатора в зону кристаллизации алмаза является градиент давления, появляющийся при превращении графита в алмаз изза объемного эффекта полиморфного превращения. Установлено, что при синтезе алмазного поликристаллического композиционного материала в области термодинамической стабильности алмаза полиморфное превращение графит-алмаз происходит через параллельно протекающие твердофазные и жидкофазные процессы. Это проявляется в образовании промежуточных фаз (лонсдейлит), влиянии структурных свойств графита на процесс синтеза и подтверждается влиянием параметров синтеза на физические, механические и структурные свойства поликристаллов. Количество ферромагнитных включений в АПКМ зависит от условий их синтеза и при увеличении давления, уменьшении времени синтеза и размера композитов количество ферромагнитных включений снижается.