Производство труб - Дипломная работа

бесплатно 0
4.5 33
Сортамент и требования нормативной документации к трубам. Технология и оборудование для производства труб. Разработка алгоритмов управленияы редукционным станом ТПА-80. Расчет прокатки и калибровки валков редукционного стана. Силовые параметры прокатки.


Аннотация к работе
Линия горячей резки заготовки предназначена для задачи нагретой штанги в ножницы, резки заготовки на необходимые длины, отвод резаной заготовки от ножниц. При прокатке непрерывный стан работает следующим образом: рольгангом за прошивным станом гильза транспортируется со скоростью 3 м/с к передвижному упору и, после остановки, с помощью цепного транспортера передается на решетку перед непрерывным станом и откатывается на рычаги дозатора. После чего труба рольгангом транспортируется в район обрезки заднего конца и подходит к стационарному упору на участке обрезки заднего конца трубы, техническая характеристика оборудования участка ПОЗК приведена в табл.2.7. Далее труба скатывается по решетке на выравнивающий рольганг, подходит к упору, определяющему длину обрезки, и поштучно укладывателем передается с выравнивающего рольганга на решетку перед отводящим рольгангом, при этом во время перемещения происходит обрезка заднего конца трубы. При отсутствии поступления труб с непрерывного стана (при остановке проката) разрешается подача в индукционную установку отложенных «холодных» труб поштучно.По сравнению с агрегатами, введенными в эксплуатацию в 60-е года, новые станы имеют существенные отличия: на них изготовляют, в основном, трубы нефтяного сортамента, в связи с чем в цехах сооружаются крупные участки для отделки этих труб, включающие оборудование для высадки их концов, термообработки, нарезки труб, производства муфт и т.п.; значительно расширился диапазон размеров труб: максимальный диаметр возрос с 168 до 340 мм, толщина стенки - с 16 до 30 мм, что стало возможным благодаря освоению на непрерывных станах процесса прокатки на длинной оправке, перемещающейся с регулируемой скоростью, взамен плавающей. С одной стороны, до недавнего времени требования к качеству, и прежде всего, к стабильности размеров труб, удовлетворялись относительно простыми средствами (в частности, рациональными конструкциями оборудования станов). Таким образом, отмеченные составляющие общей разностенности труб оказывают существенное влияние на технико-экономические показатели работы непрерывных агрегатов, связаны с физическими особенностями процессов прокатки в непрерывном и редукционном станах и могут быть устранены или существенно снижены только за счет специальных автоматических систем, изменяющих настройку стана в процессе прокатки трубы. Комплекс систем управления процессом прокатки труб в непрерывном и редукционном станах, предназначенных для сокращения концевых отходов при редуцировании и повышении точности труб за счет снижения продольной разностенности и разброса средних толщин стенок образует АСУ ТП агрегата. Максимальная величина коэффициента пластического натяжения в стане (zmax) ограничивается двумя факторами: тянущей способностью валков и условиями разрыва трубы в стане.Сократить длину утолщенных концов можно за счет увеличения коэффициента пластического натяжения путем изменения оборотов валков при прокатке концевых участков трубы. Эта система позволяет динамически регулировать обороты валков клетей РРС при прокатке концевых участков труб согласно заданной линейной зависимости. Такое регулирование оборотов валков при прокатке концевых участков труб называется “клин скоростей”. Обороты валков при прокатке концевых участков трубы рассчитываются по формуле: , (3.4.) где ni-обороты валков в i-ой клети при установившемся режиме, Ki-коэффициент снижения оборотов валков в %, i-номер клети. В результате моделирования процессов заполнения клетей РРС и выхода трубы из стана трубы получили зависимости толщины стенки переднего и заднего концов труб от величины изменения скорости вращения валков в первых клетях стана, которые представлены на рис.3.9. и рис.3.10. для труб размером 33,7х3,2 мм.За счет данного мероприятия планируется уменьшение расходного коэффициента металла, причем вследствие уменьшения длины отрезаемых утолщенных концов готовых труб ожидается увеличение объемов производства на 80 тонн в месяц в среднем. Поскольку результатом внедрения проекта не является увеличение выпуска продукции, пересчет значений расхода по переделу в проектной калькуляции не осуществляется. Расчет показателей проекта производится на основании калькуляции себестоимости, приведенной в табл. Рентабельность продукции составляла: Рентабельность продукции по проекту: Поток наличности по отчету и по проекту представлены в табл.4.3. и 4.4., соответственно. Энергетические затраты: электроэнергия силовая, КВТ/ч пар на производство, Гкал вода техническая, тм3 воздух сжатый, тм3 оборотная вода, тм3 промливневые стоки, тм3 3.В работе рассмотрена возможность снижения длины утолщенных концов, образующихся при прокатке на редукционном стане, за счет изменения скоростных настроек стана при прокатке концевых участков трубы с использованием возможностей системы УЗС-Р.

Вывод
Используя результаты расчетов калибровки инструмента (п. 3.3.) и скоростной настройки стана (скоростей вращения валков) при установившемся процессе редуцирования (п. 3.4.) в программной среде MATHCAD 2001 Professional осуществили решение системы (3.2.) и выражения (3.3.) с целью определения изменения толщины стенки.

Сократить длину утолщенных концов можно за счет увеличения коэффициента пластического натяжения путем изменения оборотов валков при прокатке концевых участков трубы.

В настоящее время на редукционном стане ТПА-80 создана система управления скоростным режимом непрерывной безоправочной прокатки. Эта система позволяет динамически регулировать обороты валков клетей РРС при прокатке концевых участков труб согласно заданной линейной зависимости. Такое регулирование оборотов валков при прокатке концевых участков труб называется “клин скоростей”. Обороты валков при прокатке концевых участков трубы рассчитываются по формуле: , (3.4.) где ni-обороты валков в i-ой клети при установившемся режиме, Ki-коэффициент снижения оборотов валков в %, i-номер клети.

Зависимость коэффициента снижения оборотов валков в данной клети от номера клети является линейной

Кі= (рис.3.8.).

Зависимость коэффициента снижения оборотов валков в клети от номера клети.

Рис. 3.8

Исходными данными для использования этого режима регулирования являются: - количество клетей, в которых изменяется скоростная настройка ограничивается длиной утолщенных концов (3…6);

- величина снижения оборотов валков в первой клети стана ограничивается возможностью электропривода (0,5…15 %).

В данной работе для исследования влияния скоростной настройки РРС на концевую продольную разностенность было принято, что изменение скоростной настройки при редуцировании переднего и заднего концов труб осуществляется в первых 6 клетях. Исследование проводилось путем изменения скорости вращения валков в первых клетях стана по отношению к установившемуся процессу прокатки (варьирование угла наклона прямой на рис. 3.8).

В результате моделирования процессов заполнения клетей РРС и выхода трубы из стана трубы получили зависимости толщины стенки переднего и заднего концов труб от величины изменения скорости вращения валков в первых клетях стана, которые представлены на рис.3.9. и рис.3.10. для труб размером 33,7х3,2 мм. Наиболее оптимальным значением “клина скоростей” с точки зрения минимизации длины концевой обрези и “попадания” толщины стенки в поле допусков стандарта DIN 1629 (допуск по толщине стенки ±12,5%) является K1=10-12%.

На рис. 3.11. и рис. 3.12. приведены зависимости длин переднего и заднего утолщенных концов готовых труб при использовании “клина скоростей” (K1=10%), полученные в результате моделирования переходных процессов. Из приведенных зависимостей можно сделать следующее заключение: использование “клина скоростей” дает заметный эффект только при прокатке труб диаметром меньше 60 мм с толщиной стенки меньше 5мм, а при большем диаметре и толщине стенки трубы необходимое для достижения требований стандарта утонение стенки не происходит.

На рис. 3.13., 3.14., 3.15., приведены зависимости длин переднего утолщенного конца от наружного диаметра готовых труб для значений толщин стенок равных 3,5, 4,0, 5,0 мм, при различных значениях “клина скоростей” (приняли коэффициент снижения оборотов валков K1 равной 5%, 10%, 15%).

Зависимость толщины стенки переднего конца трубы от величины

“клина скоростей” для типоразмера 33,7х3,2 мм

Рис. 3.9

Зависимость толщины стенки заднего конца трубы от величины “клина скоростей” для типоразмера 33,7х3,2 мм

Рис. 3.10

Зависимость длины переднего утолщенного конца трубы от D и S (при K1=10%)

Рис. 3.11

Зависимость длины заднего утолщенного конца трубы от D и S (при K1=10%)

Рис. 3.12

Зависимость длины переднего утолщенного конца трубы от диаметра готовой трубы (S=3,5 мм) при различных значениях “клина скоростей”.

Рис. 3.13

Зависимость длины переднего утолщенного конца трубы от диаметра готовой трубы (S=4,0 мм) при различных значениях “клина скоростей”

Рис. 3.14

Зависимость длины переднего утолщенного конца трубы от диаметра готовой трубы (S=5,0 мм) при различных значениях “клина скоростей”.

Рис. 3.15

Из вышеприведенных графиков видно, что наибольший эффект с точки зрения уменьшения концевой разностенности готовых труб дает динамическое регулирование оборотов валков РРС в пределах K1=10…15%. Недостаточно интенсивное изменение “клина скоростей” (K1=5%) не позволяет утонить толщину стенки концевых участков трубы.

Также при прокатке труб со стенкой толще 5 мм натяжение, возникающее при действии “клина скоростей”, неспособно утонить стенку изза недостаточной тянущей способности валков. При прокатке труб диаметром больше 60 мм коэффициент вытяжки в редукционном стане небольшой, поэтому утолщение концов практически не происходит, следовательно использование “клина скоростей ” нецелесообразно.

Анализ приведенных графиков показал, что применение “клина скоростей” на редукционном стане ТПА-80 ОАО “КРЕСТРУБЗАВОД” позволяет сократить длину переднего утолщенного конца на 30%, заднего утолщенного конца 25%.

Как показали расчеты Мочалова Д.А. для более эффективного применения “клина скоростей” для дальнейшего сокращения концевой обрези необходимо обеспечить работу первых клетей в тормозном режиме с почти полным использованием силовых возможностей валков за счет использования более сложной нелинейной зависимости коэффициента снижения оборотов валков в данной клети от номера клети. Необходимо создать научно обоснованную методику для определения оптимальной функции Ki=f(i).

Разработка такого алгоритма оптимального управления РРС может служить целью для дальнейшего развития УЗС-Р в полноценную АСУТП ТПА-80. Как показывает опыт использования подобных АСУТП регулирование числа оборотов валков при прокатке концевых участков труб, по данным фирмы Маннесманн (пакет прикладных программ CARTA), позволяет сократить величину концевой обрези труб более чем на 50%, за счет системы автоматического управления процессом редуцирования труб, которая включает в себя как подсистемы управления станом и измерительную подсистему, так и подсистему вычисления оптимального режима редуцирования и управление процессом в режиме реального времени.В данном дипломном проекте разработана технология производства труб общего назначения по DIN 1629. В работе рассмотрена возможность снижения длины утолщенных концов, образующихся при прокатке на редукционном стане, за счет изменения скоростных настроек стана при прокатке концевых участков трубы с использованием возможностей системы УЗС-Р. Как показали расчеты снижение длины утолщенных концов может достигать 50 %.

Экономические расчеты показали, что использование предложенных режимов прокатки позволит снизить себестоимость единицы продукции на 1,45 %. Это, при сохранении существующих объемов производства, позволит уже в первый год увеличить прибыль на 20 млн.руб.

Список литературы
Анурьев В.И. «Справочник конструктора-машиностроителя» в 3-х томах, том 1 - М. «Машиностроение» 1980 - 728 с.

Анурьев В.И. «Справочник конструктора-машиностроителя» в 3-х томах, том 2 - М. «Машиностроение» 1980 - 559 с.

Анурьев В.И. «Справочник конструктора-машиностроителя» в 3-х томах, том 3 - М. «Машиностроение» 1980 - 557 с.

Павлов Я.М. «Детали машин». - Ленинград «Машиностроение» 1968 - 450 с.

Васильев В.И. «Основы проектирования технологического оборудования автотранспортных предприятий» учебное пособие - Курган 1992 - 88 с.

Васильев В.И. «Основы проектирования технологического оборудования автотранспортных предприятий» - Курган 1992 - 32 с.
Заказать написание новой работы



Дисциплины научных работ



Хотите, перезвоним вам?