Программа установки защищенных сетевых соединений с использованием протокола ISAKMP - Дипломная работа

бесплатно 0
4.5 152
Анализ и сравнение различных методов реализации системы защиты сетевых соединений. Виды сетевых атак и методика их негативного воздействия, возможные последствия и меры их профилактики. Структура протокола создания защищенных сетевых соединений ISAKMP.

Скачать работу Скачать уникальную работу

Чтобы скачать работу, Вы должны пройти проверку:


Аннотация к работе
В пакете 1 инициатор посылает SA payload, компонент, который содержит все предлагаемые варианты параметров соединения. В пакете 1 инициатор посылает сразу SA payload с предложением параметров соединения, KE payload со своим открытым ключом, Nonce payload со случайной информацией и идентифицирует себя с помощью Identification payload. Поэтому в пакет 2 состоит из тех же частей, что и пакет 1 (с соответствующим наполнением) и добавляется Hash payload, содержащий информацию, аутентифицирующую ответчика. Третий пакет посылается инициатором в подтверждение правильности принятой информации и содержит только Hash payload, который вычисляется с помощью буфера случайных данных, посланных ответчиком во втором пакете. Поиск ведется на основе значений COOKIEI и COOKIER. Т.к. некоторые пакеты могут представлять собой запросы на создание соединений с другой стороны (т.е. нить для их обработки еще не создана), переповторы этих запросов (нить уже создана и уже проставлено значение COOKIER, т.е. в данную нить пакет не попадет), а также ответы на наши запросы (COOKIER в таблице стоят нулевые), то порядок поиска подходящей записи в таблице следующий: «если значение COOKIER в пакете или таблице нулевое, то запись считается сработавшей, если совпало только значение COOKIEI, иначе должны совпасть значение и COOKIER, и COOKIEI».Исходя из технического задания, данная реализация протокола ISAKMP должна содержать 4 обмена (Main Mode, Aggressive Mode, New Group Mode и Quick Mode) и должна поддерживать 4 метода аутентификации (методом заранее известного секретного ключа, цифровой подписью с помощью алгоритмов DSS и RSA, шифрования открытым ключом с помощью алгоритма RSA). Для алгоритмов шифрования сначала происходит проверка работы функций самих с собой (шифрование произвольный текст, расшифрование и проверка идентичность), затем проверка работоспособности с другими реализациями данного алгоритма и проверка тестовых последовательностей. Тестирование сначала производится между собой (расчет двух пар ключей, расчет общего ключа для обеих сторон и проверка идентичности), затем с другими реализациями данного алгоритма. Часть из вышеперечисленных задач можно делать параллельно с выполнением основной задачи (например, работа с сертификатами нужно лишь при реализации методов аутентификации цифровой подписью и шифрованием открытым ключом). Ошибки, всплывающие в процессе работы и при тестировании, можно разделить на ошибки влияющие на работоспособность программы (критические ошибки периода исполнения, ошибки доступа к ресурсам - т.е. когда программа прекращает свою работу) и ошибки связанные с реализацией протокола (неправильно составленный пакет, неправильный разбор пришедшего пакета и т.д.).В представленной работе - «Программа установки защищенных сетевых соединений с использованием протокола ISAKMP», - были решены следующие задачи: Исследована структура протокола ISAKMP и уязвимость его сетевым атакам Разработана и проанализирована общая структура защиты информации при передаче по сети.

Введение
Internet в последнее время стал популярной, недорогой базовой инфраструктурой. Универсальный доступ к нему заставил многие компании рассмотреть возможность создания виртуальной защищенной сети (Virtual Private Network VPN) на основе глобальной сети Internet (которая, по сути, представляет собой совокупность сетей). Преимущества VPN заключается в использовании базовой инфраструктуры Internet и для коммуникаций внутри компании (включая ее различные отделения) и для связи между компаниями, причем защищенность данных соединений остается такой же, как и в локальных корпоративных сетях.

Корпоративная сеть характеризуется тем, что все ее управление находится в руках ее владельцев, данные, передаваемые по ней, проходят только через узлы входящие в эту сеть и взаимодействие с внешним миром выражается в небольшом объеме передаваемых данных (иногда и полном отсутствие). При таких самодостаточных условиях сеть можно было сделать защищенной. VPN переводит корпоративную сеть на базис Internet. При этом, однако, возникает ряд существенных трудностей. Ни один из узлов не может управлять Internet-ом. Данные из разных источников передаются посредством общей инфраструктуры. Также, благодаря развитию электронной коммерции и бурному росту сетевых технологий, значительно возрос объем данных передаваемых между компаниями. Исходя из всех вышеперечисленных особенностей, можно сделать вывод, что структура VPN существенно отличается от старой традиционной корпоративной сети.

Координационным советом IETF (Internet Engineering Task Force) был разработан и предложен набор протоколов защиты сетевых соединений [3]. IPSEC протоколы обеспечивают целостность и конфиденциальность передаваемых данных, а также управление ключевой информацией и политикой защищенных соединений. Отличительной особенностью IPSEC от более ранних подобных протоколов заключается в защите всего пути следования передаваемых данных (а не фрагмента, как это было раньше).

Для защиты трафика было предложено два протокола AH (Authentication Header) и ESP (Encapsulating Security Payload). Протокол AH (Authentication Header) заключается в подсчете и проверке значения хеш-функции с ключом от передаваемых данных. Протокол AH обеспечивает целостность и аутентичность данных и защищает от атак, основанных на переповторах пакетов (replay attack). В основе ESP протокола лежит шифрование и расшифрование данных, и он обеспечивает те же функции, что и AH, и дополнительно конфиденциальность передаваемой информации.

Эти две вышеуказанные особенности привели к возникновению проблемы управления ключевой информации и политик (параметров) соединений. Простейшим решением является ручное конфигурирование соединений, при котором параметры и секретные ключи жестко прописываются при запуске системы. К единственному достоинству можно отнести относительную простоту данного метода. Самым же большим недостатком данного метода можно считать отсутствие «масштабируемости». Это означает, что для установления секретного соединения ручным конфигурированием обе стороны должны договориться о ключе, используемом для защиты трафика и о параметрах его использования (выбор протокола, алгоритма и т.п.). Если речь идет о системе, состоящей из небольшого количества пользователей, то никаких проблем не возникает. Когда же количество пользователей составляет несколько тысяч (десятков, сотен…) процедура конфигурирования становится практически невыполнимой задачей. Другим недостатком ручного конфигурирования можно считать отсутствие простого механизма смены используемого ключевого материала. Т.е. ключ шифрование будет использоваться слишком долго (для слишком большого объема данных), что снижает защищенность передаваемых данных.

Другим способом конфигурирования соединений является использование специальных «key management» протоколов. Одним из таких протоколов явился ISAKMP. Данный протокол был также предложен координационным советом IETF. Протокол работает независимо от модуля осуществляющего защиту передаваемых данных. Результатом работы протокола является договоренные между двумя партнерами параметры защищенного соединения (включает в себя набор используемых протоколов защиты данных, алгоритмы, используемые в этих протоколах, параметры алгоритмов) и ключевая информация, для используемых алгоритмов. Полученная информация является выходными данными для протокола и должна быть передана модулю защиты передаваемых данных.

Протокол ISAKMP полностью решает проблему «масштабируемости». Ключевой материал высчитывается на основе данных, передаваемых в процессе аутентификации партнера и договора параметров соединения. При расчете также используется случайные величины, генерящиеся каждой из сторон для данного соединения, что обеспечивает разный ключевой материал при двух попытках установления соединения между одними и теми же партнерами. Данное свойство также позволяет не описывать правило секретного соединения для каждого из абонентов, а объединять их по какому-либо признаку (подсеть, диапазон IP адресов, определенный протокол и т.д.) и описать для них одно правило создания секретного соединения.

Протокол также решает и проблему времени жизни ключевой информации. Время жизни ключевой информации (в секундах и килобайтах) является одним из параметров договариваемого соединения. Таким образом, легко регулируется время использования ключа или объем данных, который можно этим ключом шифровать, и появляется механизм, позволяющий запустить создание нового соединения при истечении времени жизни ключевой информации.

Анализ методов реализации системы защиты сетевых соединений

Как только сетевые технологии стали использоваться корпорациями для передачи конфиденциальной информации, возникла проблема защиты этой передаваемой информации.

Самым первым методом защиты сетевых соединений создание локальных корпоративных сетей. Их отличительной особенностью был полный контроль над всеми элементами, входящими в эту сеть, всеми узлами, через которые проходила информация. Локальная корпоративная сеть была самодостаточной и зачастую замкнута в себе. Она или совсем не имела выхода во внешний мир или выходящий трафик тщательно фильтровался. Связанные с этим временные задержки никого не волновали, т. к. этот трафик был весьма не значительным. При таком небольшом, полностью контролируемом оборудовании, корпоративные сети считались достаточно защищенными.

Но сегодняшние корпоративные сети развиваются согласно новым моделям компаний: корпоративная сеть сегодня это набор физически разделенных локальных сетей, соединенных посредством общедоступной сети Internet, а взаимосвязь между компаниями сегодня жизненно необходима. Эта новая модель компании вынесла на общее обозрение передаваемые данные, чего не делала старая корпоративная сеть. Разработчики и пользователи VPN должны осознавать опасность этой открытости и защищаться от нее. Хорошо продуманная политика защиты VPN позволит компании организовать соединения между локальными сетями и между компаниями с такой же гарантией, как и в старых традиционных корпоративных сетях.

Для защиты трафика внутри VPN требовались специальные протоколы передачи данных и протоколы для получения параметров соединения и ключевой информации. На данный момент к протоколам первого типа относятся AH (Authentication Header) и ESP (Encapsulating Security Payload). AH передает данные и некую подпись по этим данным, что обеспечивает их целостность и подлинность. ESP передает зашифрованные данные, что обеспечивает дополнительно конфиденциальность данных.

К протоколам, обеспечивающим AH и ESP необходимыми параметрами и ключевой информацией, относится протокол ISAKMP. Он и будет подробнее рассмотрен далее в этой главе.

Структура протокола ISAKMP

В этом разделе будет рассмотрено, как ISAKMP протокол договаривается о параметрах и обменивается ключами между двумя системами, которые хотят создать секретное соединение [4].

Для того чтобы рассмотреть все на конкретном примере примем, что метод аутентификации - заранее известный секретный ключ (preshared key).

Все пакеты, которыми обмениваются партнеры в процессе установления соединения, начинаются с ISAKMP заголовка. Он содержит некоторую идентифицирующую информацию (Initiator Cookie, Responder Cookie и Message ID), тип обмена, флаги, номер версии и длину всего пакета.

Основное тело пакета состоит из payload-ов. Payload - объем информации, несущий определенную смысловую нагрузку. В дальнейшем этот элемент будем называть «компонентом».

Фаза 1 (Main Mode)

Целью первой фазы является создание секретного соединения, под защитой которого будут проходить все последующие обмены [5]. Фаза состоит из 6 обменов - 3 со стороны инициатора и 3 со стороны ответчика (Рис. 1).

Рис. 1. Структура фазы 1 (Main Mode)

В пакете 1 инициатор посылает SA payload, компонент, который содержит все предлагаемые варианты параметров соединения. Его структура представлена на рисунке 2.

Рис. 2. Структура SA payload

SA payload содержит внутри себя список Proposal payload-ов, каждый из которых представляет собой отдельный протокол. Proposal payload-ы могут объединяться в группы по «И» и по «ИЛИ». Это осуществляется с помощью номеров данных компонент - одинаковые номера означают объединение по «И», а разные по ИЛИ. В свою очередь Proposal payload содержит список Transform payload-ов, которые представляют алгоритмы для данного протокола. Объединены они могут быть только по «ИЛИ». Transform payload содержит список атрибутов, конкретизирующих данный алгоритм (длина ключа) и содержащих другие параметры соединения. Атрибуты не могут выбираться, или принимается весь список атрибутов или все отвергает.

Таким образом, инициатор посылает ответчику на выбор список списков протоколов и для каждого протокола на выбор список алгоритмов. Из всего этого ответчик выбирает список протоколов, причем для каждого протокола может быть выбран только один алгоритм и набор атрибутов для данного алгоритма не может изменяться (ни добавления / удаления, ни изменения), т.е. алгоритм или принимается со всем списком атрибутов, или отвергается. Выбранная информация оформляется также в SA payload, и отправляется инициатору вторым пакетом.

Итогом первых двух пакетов, или первого обмена, становиться договоренность относительно параметров соединения.

В пакетах 3 и 4 передаются KE payload и Nonce payload. В КЕ payload инициатор и ответчик обмениваются своими открытыми ключами для алгоритма Diffie-Hellman. Они потребуются на последующих этапах для расчета общего ключа. Nonce payload содержит случайную последовательность любого размера, которые также будут участвовать при расчете ключевой информации.

После этого обмена можно начать расчет ключевой информации. На основе чужого открытого и своего секретного ключей рассчитывается общий ключ (g^xy) по алгоритму Diffie-Hellman. Затем производится расчет некоторых служебных констант.

SKEYID = PRF (Preshared Key, Ni | Nr) где Preshared Key - заранее известный секретный ключ.

SKEYID_d = PRF (SKEYID, g^xy | CKY-I | CKY-R | 0)

SKEYID_a = PRF (SKEYID, SKEYID_d | g^xy | COOKIEI | COOKIER | 1)

SKEYID_e = PRF (SKEYID, SKEYID_a | g^xy | COOKIEI | COOKIER | 2)

Из формул видно, что в расчете всех констант (а, следовательно, и во всех последующих расчетах) участвует известный только обменивающимся сторонам секретный ключ (Preshared Key), что обеспечивает аутентификацию сторон, т. к. никто другой не сможет правильно рас читать эти константы.

Из SKEYID_e мы получаем ключевую информацию. Остальные константы будут использованы при дальнейших расчетах.

В пакетах 5 и 6 партнеры обмениваются информацией, которая их идентифицирует (IDII и IDIR) и информацией, которая их аутентифицирует (HASH_I, HASH_R). Идентификационная информация передается посредством Identification payload, где указывается тип идентификационной информации (IP адрес, имя пользователя, SUBNET и т.п.) и собственно значение.

Аутентификационная информация передается через Hash payload. Его содержимое рассчитывается по следующим формулам (для инициатора и ответчика соответственно): HASH_I = PRF (SKEYID, g^xi | g^xr | COOKIEI | COOKIER | SAI | IDII)

HASH_R = PRF (SKEYID, g^xr | g^xi | COOKIER | COOKIEI | SAI | IDIR)

Последний обмен (пакет 5 и 6) уже передается защищенным с помощью договоренных на первом этапе алгоритмов и рассчитанной после второго пакета ключевой информацией.

Фаза 1 (Aggressive Mode)

Aggressive Mode выполняет те же функции, что и Main Mode, но укладывается всего в три пакета [5]. Такое упрощение, однако, приводит к тому, что он более подвержен атакам, чем Main Mode. На рисунке 3 представлена структура Aggressive Mode.

В пакете 1 инициатор посылает сразу SA payload с предложением параметров соединения, KE payload со своим открытым ключом, Nonce payload со случайной информацией и идентифицирует себя с помощью Identification payload.

Сразу видны недостатки данного режима. В SA payload-е не может быть предложено более одной группы параметров для алгоритма Diffie-Hellman-а т. к. сразу же посылается открытый ключ, а его размер напрямую зависит от этих параметров. В данном режиме, в отличие от Main Mode, идентификационная информация посылается в открытом виде.

Ответчик, получив пакет 1, уже имеет достаточно информации для расчета рабочих констант и своей аутентификационной информации. Поэтому в пакет 2 состоит из тех же частей, что и пакет 1 (с соответствующим наполнением) и добавляется Hash payload, содержащий информацию, аутентифицирующую ответчика. Пакет еще не может быть зашифрован (т. к. инициатор не знает выбранного алгоритма и у него нет ключей), но можно уже провести ключевой информации, которая будет использована в будущем.

Рис. 3. Структура фазы 1 (Aggressive Mode)

Инициатор из пакета 2 берет необходимую информацию. Затем вычисляет рабочие константы, аутентификационную информацию и ключи шифрования. Пакетом 3 инициатор аутентифицирует себя.

Фаза 2 (Quick Mode)

Целью второй фазы является получение параметров секретного соединения и ключевой информации [5] [6]. Все пакеты, передаваемые во время второй фазы, защищаются секретным соединением, созданным во время первой фазы. Одновременно с обеспечением конфиденциальности передаваемой информации обеспечивается и целостность данных путем передачи значения хеш-функции от данных.

Рис. 4. Структура фазы 2 (Quick Mode)

Режим состоит из трех пакетов. Его структура представлена на рисунке 4. В первом пакете инициатор посылает SA payload, содержащий предложения о параметрах будущего соединения, случайную информацию (Nonce payload) для создания ключевой информации. Все остальные компоненты пакета являются опциональными. Если для расчета ключевой информации требуется использовать «свежий» ключевой материал, то осуществляется еще один обмен открытыми ключами, в противном случае для расчета берется информация из первой фазы. Также, если локальная политика требует использование во второй фазе идентификационной информации отличной от информации используемой в первой фазе, добавляются соответствующие Identification payload-ы.

Структура второго пакета аналогична первому, только заполняется информацией об ответчике. Исключение составляют только компоненты с идентификационной информацией, которые или принимаются (и тогда в таком же виде и отсылаются) или не принимаются и попытка установления соединения считается неудачной.

Третий пакет посылается инициатором в подтверждение правильности принятой информации и содержит только Hash payload, который вычисляется с помощью буфера случайных данных, посланных ответчиком во втором пакете. Содержимое Hash payload-ов вычисляются по следующим формулам: HASH(1) = PRF (SKEYID_a, Message ID | SA | Ni [| KE] [| IDIC | IDCR])

HASH(2) = PRF (SKEYID_a, Message ID | Ni | SA | Nr | [| KE] [| IDIC | IDCR])

HASH(3) = PRF (SKEYID_a, 0 | Message ID | Ni | Nr)

Формула для расчета окончательного ключевого материала зависит от того, был ли обмен открытыми ключами для создания нового общего ключа. Если такого обмена не было, то формула следующая: KEYMAT = PRF (SKEYID_d, protocol | SPI | Ni | Nr) где protocol - номер протокола, для алгоритма которого считается ключевой материал.

Если все же вычисление общего ключа производилось, формула для расчета окончательного ключевого материала следующая: KEYMAT = PRF (SKEYID_d, g^xy | protocol | SPI | Ni | Nr)

Таким образом, после второй фазы мы получаем всю необходимую информацию для создания секретного соединения. Список применяемых протоколов и используемых в них алгоритмы получается после обмена SA payload-ами во второй фазе. Ключевая информация для каждого алгоритма рассчитывается по приведенным выше формулам. Следует заметить, что приведенная выше структура протокола была упрощена для простоты восприятия (отсутствует рассмотрение остальных методов аутентификации и New Group Mode).

Виды сетевых атак

Не смотря на то, что протокол сам по себе не производит защиту передаваемой информации, а лишь создает соединения для передачи данных, он сам является предметом атаки. Подвергнуться атаке в протоколе могут процесс аутентификации, процесс обеспечения целостности и конфиденциальности передаваемой информации и, наконец, сама работоспособность протокола. В этом разделе мы рассмотрим основные виды сетевых атак и то, как протокол им противостоят [4].

Отказ в обслуживании (Denial of Service)

Данная атака является одной из самых простых и эффективных. Целью атаки является работоспособность системы или, в данном случае, протокола.

Сама атака представляет собой посылку злоумышленником большого числа запросов на создание соединения, вынуждая противоположную сторону тратить ресурсы на их обработку. Чтобы скрыть свой истинный адрес пакеты могут посылаться с фиктивных адресов. Если посылаемые ложные запросы занимают собой все ресурсы системы, то обработка приходящих правильных запросов откладывается на неопределенное время или они просто игнорируются. Со стороны внешнего мира система выглядит неработающей.

Оговоримся сразу, способа, полностью защитится от данного типа атак не существует. Атаку можно лишь сделать менее эффективной. В протоколе ISAKMP это достигается в первую очередь за счет откладывания основных «тяжелых» расчетов на более поздние обмены. В первые обмены производятся простые вычисления (выбор параметров соединения). В то же время сама работа протокола состоит из нескольких обменов, что не позволяет злоумышленнику использовать фиктивные адреса, т. к. не получив информацию от нас, он не сможет правильно сформировать следующий пакет. Т.е. если атака и станет успешной, мы будем точно знать, кто нас атаковал. Однако следует заметить, что данный способ защиты не подходит для Aggressive Mode, который, как уже подчеркивалось, работает быстрее, но менее защищен.

Человек посередине (Man-in-the-Middle)

Целью атаки являются конфиденциальность и целостность данных. Атака заключается в том, что злоумышленник, вклиниваясь в процесс установления секретного соединения, представляется для каждой из сторон ее партнером и проводит установление соединения от ее имени. В результате вместо одного защищенного канала между двумя партнерами получается два канала между каждой из сторон и злоумышленником. Для каждого из партнеров все выглядит обычным образом, но злоумышленник получает возможность не только просматривать данные, передаваемые по «защищенному» каналу, но даже модифицировать их. Структура описанной атаки представлена на рисунке 5.

Sx - секретный ключ, Px - открытый ключ

Защита от данного вида атаки в протоколе ISAKMP заключается в процессе аутентификации. Обязательное выполнение этого процесса во время первой фазы гарантирует обеим сторонам отсутствие «человека посередине», который смог бы прослушивать и модифицировать передаваемые данные не только во второй фазе, но и при передаче основной информации. В данном случае стойкость протокола к данному типу атаки определяется надежностью метода аутентификации. Для метода заранее известного секретного ключа это определяется уникальностью данного ключа, для методов, использующих сертификаты - достоверностью полученного сертификата.

Повтор посылки (Replay attack)

Атака заключается в перепосылке ранее записанных пакетов в расчете на неправильную реакцию атакуемого. Например, попытаться с помощью пакетов, подслушанных при аутентификации двух партнеров, представиться одним из них при установлении соединения со вторым. Даже если таким образом просто повторят уже проведенное соединение (т.е. в результате будет создано еще одно соединение совпадающие с прежним), это приведет к потере ресурсов.

Для защиты от этой атаки в протоколе был введен Nonce payload, с помощью которого стороны обмениваются случайной информацией. Эта информация потом участвует в расчетах всех констант и ключевых материалов. Использование в каждом обмене «свежей» случайной информации гарантирует защиту от атак с помощью переповторов.

В первой части данного раздела была рассмотрена структура протокола создания защищенных сетевых соединений ISAKMP. В процессе рассмотрения были приведены порядок посылки пакетов, их содержимое и объяснено назначение каждого компонента пакета. Также были даны формулы, по которым проводятся расчеты внутренних констант и окончательного ключевого материала.

Во второй части были представлены основные типы сетевых атак, объяснен принцип их действия и, на основе структуры протокола ISAKMP, показано как он противостоит этим атакам.

Разработка программы

Определение места программы в системе защиты сетевого трафика

В этом разделе мы рассмотрим, из каких основных модулей состоит система защиты сетевого трафика, назначение этих модулей и каким образом они взаимодействуют [3].

На рисунке 6 представлена структура системы защиты сетевого трафика. Рассмотрим отдельно каждый модуль.

Модуль управления

Данный модуль определяет общее поведение системы. Внутри него происходит считывание, проверка и хранение конфигурационной информации, согласно которой он управляет остальными модулями. Модуль имеет интерфейсы почти ко всем остальным модулям. В модуль обработки трафика он прогружает правила фильтрации трафика (входящего и исходящего), правила обработки трафика (заданные вручную в конфигурации и полученные модулем ISAKMP). Из модуля обработки трафика он получает запросы, на создание секретного соединения (правила обработки трафика), которые передает в модуль ISAKMP. Также в процессе работы модуля ISAKMP именно на нем лежит обязанность формулирования предлагаемых вариантов параметров соединения и выбор приемлемого варианта в предложенном наборе. До прогрузки секретного соединения, созданного модулем ISAKMP, оно сохраняется в модуле хранения основной ключевой информации.

Модуль хранения основной ключевой информации

Является дублирующим местом хранения правил обработки трафика (еще одно находится в модуле обработки сетевого трафика). Необходимость дублирования информации в двух местах объясняется тем, что время жизни соединения в секундах легче отслеживать в этом модуле, а в килобайтах в модуле обработки трафика. Дополнительно появляется возможность не хранить в модуле обработки трафика информации о соединениях, которыми давно не пользовались, а запрашивать эту информацию по необходимости. Взаимодействие ведется только с модулем управления, от которого принимается информация о соединения для сохранения и команды на удаление соединения, а выдается сигнал о том, что у какого-то соединения кончилось время жизни.

Модуль обработки сетевого трафика

Обрабатывает входящий и исходящий трафики согласно правилам фильтрации и правилам обработки трафика, которые прогружает модуль управления. Для противостояния атакам отказа в доступе, если для входящего пакета не находится правила его обработки, то он просто игнорируется. Наоборот, если подобная ситуация произойдет для исходящего пакета, то в модуль управления передастся запрос на создания такого соединения. Также в модуль управления может поступить сигнал о том, что у какого-либо соединения истекло время жизни в килобайтах. От модуля управления данный модуль может получить созданное соединение и сигнал на уничтожение соединения.

Модуль ISAKMP

По запросу со стороны модуля управления и используя информацию из конфигурации, создает правила обработки трафика. Взаимодействует с модулем управления и модулем хранения ключевой информации ISAKMP. В модуль хранения ключевой информации сохраняются внутренние соединения, созданные во время первой фазы и использующиеся для защиты последующих фаз. От модуля управления получает запрос на создание соединения, информацию из конфигурации для формирования / выбора параметров соединения и формирования / проверки идентифицирующей информации и информацию для аутентификации себя. Обратно в модуль управления отдается созданное соединение или сигнал о неудачной попытке его создания.

Модуль хранения ключевой информации ISAKMP

Данный модуль является хранилищем информации о секретных соединениях протокола ISAKMP, используемых им для защиты своего трафика. Данные соединения полностью скрыты для модуля управления. Модуль осуществляет прием на хранение информации о соединениях, поиск существующего соединения и отслеживание окончания времен жизни хранимых соединений (при истечении срока соединение тут же удаляется).

На основе представленной структуры можно описать, каким образом программа, реализующая протокол ISAKMP, вписывается в систему защиты сетевого трафика. Программа объединяет собой модуль ISAKMP, модуль хранения ключевой информации ISAKMP и часть модуля хранящую конфигурационную информацию необходимую для работы модуля ISAKMP, осуществляющая запросы на создание нового соединения и приема созданных правил обработки трафика. Таким образом, получается только один интерфейс со всей остальной системой, описывающий взаимоотношения между частью модуля управления вошедшей в состав программы и оставшейся частью модуля управления.

Разработка общей структуры программы

Так как представленная программа написана с использованием технологии «нитей» (Thread), то в начале данного раздела будет дано определение этому термину, описаны плюсы и минусы использования этой технологии, а затем рассмотрено из каких конкретно модулей (нитей) состоит программа, их назначение и взаимодействие между собой.

Что такое нить (thread)?

Под нитью (иногда называемой нитью контроля) понимается независимая последовательность выполнения программного кода внутри отдельного процесса [10]. Нити разделяют между собой всю память процесса, и если одна нить пишет что-то в память, другая может читать эти данные. Нити также разделяют все остальные ресурсы процесса, например, дескриптор файла, т.е. сразу несколько нитей могут писать в один и тот же файл. Нити внутри процесса распределяются и исполняются абсолютно независимо, т.е. если одна нить ожидает ввода информации, это никаким образом не прерывает исполнение других нитей. В мультипроцессорных системах разные нити могут выполняться разными процессорами. В однопроцессорных же системах - нити могут исполняться в произвольном порядке. Обычно, нить исполняется, пока не будет заблокирована каким-либо запросом или пока не закончится отведенный ей отрезок времени (квант времени).

Не смотря на то, что использование нитей несколько усложняет процесс программирования, они дают преимущества. Рассмотрим эти преимущества подробнее.

Производительность. Программа, реализованная с помощью только одной нити, переходит в режим ожидания при каждом системном вызове. Использование более одной нити (и для мультипроцессорных, и для однопроцессорных систем) позволяет совместить времена ожидания выполнения системных вызовов. Нить, которая делает запрос, переходит в режим ожидания, но другая нить в данном процессе может продолжать работу. При этом одному процессу в каждый момент времени может соответствовать несколько запросов к системе. Следует заметить, что данные запросы остаются синхронными.

Мультипроцессорные системы. Использование нескольких нитей в одном процессе является эффективным способом использования возможности параллельной работы.

Графический интерфейс для пользователя. Однонитевое приложение, предоставляющее пользователю графический интерфейс, обычно замирает при ожидании реакции от пользователя (например, нажатие кнопки). Если бы это приложение было много нитевым, то с ожиданием нажатия кнопки можно было бы связать отдельную нить, а другие нити продолжали бы работать. Так же в подобных системах множество нитей позволило бы сделать незаметным для пользователя выполнение служебных действий (например, автоматическое сохранение).

Оперативность серверных приложений. Серверные приложения обрабатывают запросы, приходящие от клиентов. Одновременно может прийти несколько запросов. В случае однонитевого приложения запросы будут выполняться последовательно, и выполнение сложного запроса может надолго отложить выполнение других, более простых и важных запросов. Много нитевая структура в этом отношении представляется более адаптивной, т. к. каждый запрос пользователя может быть обработан согласно его сложности и важности. Другой проблемой для серверных приложений является взаимные запросы. Это происходит если сервер 1, обрабатывая клиентский запрос, делает запрос к серверу 2, который в свою очередь при его обработке обращается обратно к серверу 1. В однонитевом приложении это приведет к зависанию обоих серверов, т. к. единственная нить сервера 1 уже занята обработкой запроса и не может обработать запрос сервера 2. Использование нескольких нитей решает эту проблему, т. к. для каждого запроса выделяется отдельная нить, которая выполняется независимо от других.

Однако использование нитей несет в себе несколько опасностей, и главная из них это работа с общей памятью. Рассмотрим конкретный пример. Оператор увеличения переменной на единицу для программы выливается в 3 действия: Загрузить значение переменной в регистр

Увеличить регистр

Записать значение регистра в переменную

Если две нити начнут выполнять этот оператор одновременно, то может произойти следующая последовательность действий: Нить 1 Нить 2

1 Загрузить значение переменной в регистр

1 Загрузить значение переменной в регистр

2 Увеличить регистр

3 Записать значение регистра в переменную

2 Увеличить регистр

3 Записать значение регистра в переменную

В этом случае нить 1 перезапишет значение записанной нитью 2, и переменная увеличится лишь на единицу вместо двух. Такие места в коде называют критическими секциями и организуют работу так, что они гарантировано выполняются только одной нитью.

Использование многонитевого принципа построения моей программы вызвано двумя причинами: Необходимость постоянно прослушивать требуемый порт на наличие пришедшего пакета.

Принцип действия программы похож на принцип работы серверного приложения (в качестве запросов клиентов выступают приходящие пакеты). В связи с этим становиться очень ценным возможность обработки пакетов согласно их важности.

Механизм обмена информации между нитями

В процессе работы программы нитями необходимо обмениваться информацией. В основном это передача пакетов и запросов с параметрами. Для осуществления обмена использовался механизм pipe [8]. Pipe представляет собой модуль для передачи данных. Единственным его ограничением является то, что этот модуль создает однонаправленный поток данных. Создание производится с помощью функции pipe.

#include int pipe (int filedes[2]);

Функция возвращает 0 в случае успеха и -1 при ошибке. Параметрами в функцию предается массив из двух дескрипторов, которые заполняются внутри функции. В первый дескриптор (filedes[0]) предназначен для чтения из pipe, а второй (filedes[1]) для записи в pipe. Чтение из pipe и запись в него производятся с помощью стандартных функций read и write. Для этих функций дескриптор pipe ничем не отличается от дескриптора файла.

#include ssize_t read (int fildes, void *buf, size_t nbyte);

ssize_t read (int fildes, void *buf, size_t nbyte);

Вторым параметром в функции передается указатель на буфер, куда записывать данные (для read) или откуда считывать их (для write). Третьим параметром для read передается максимальное число читаемых данных, я для write число записываемых байт.

Выбор pipe в качестве средства передачи между нитями обусловлен простотой и наглядностью данного метода. Плюс корректно обрабатывают ситуацию, когда в pipe пишут сразу 2 сообщения - эти сообщения не перемешиваются, а записываются последовательно. Правда в этом случае встает задача разделения этих двух сообщений, т. к. read не разделяет их, а, прочитав сразу два можно или не заметить второе сообщение или посчитать неверной структуру первого. Для избежания этого формат сообщения, передаваемого в pipe в моей программе следующий.

Рис. 8. Структура передаваемых запросов

Первым байтом в сообщении идет тип данного сообщения, который говорит, какие именно данные содержаться. Если тип сообщения не предусмотрен в месте, куда это сообщение пришло, сообщается об ошибке и из pipe считывается буфер максимальной длины. Следующие за типом сообщения 4 байта содержат длину передаваемых данных. Если тип сообщения налагает какие-либо ограничения на длину данных (например, если передается IP адрес, то его длина должна быть 4 байта) и считанная длина этим ограничениям не удовлетворяет, то также сообщается об ошибке, и стараемся все вычитать из pipe. После этого из pipe достаются данные указанной длины. После обработки считанного запроса процедура повторяется заново, начиная с получения типа сообщения. Такой формат сообщения и приведенный порядок его обработки гарантирует, что никакое сообщение не будет потеряно.

Нитевая структура программы

В этом разделе будет рассмотрено, из каких нитей состоит программа, их назначение и как они взаимодействуют друг с другом. На рисунке 9 представлена нитевая структура программа.

Рис. 9. Нитевая структура программы

На рисунке окружностями условно показаны нити, одинарными стрелками передача данными между нитями, а двойными взаимодействие с таблицей (добавление, поиск и удаление). Программа содержит 4 вида нитей: Нить работы с сетью

Нить распределения пакетов

Нить выполнения первой фазы

Нить выполнения второй фазы

Нить работы с сетью. Задачей данной нити является непрерывная проверка порта на наличие пакета и прием запросов от других модулей на отсылку пакетов. Работа данной нити начинается с открытия порта (функция socket) и указания адреса и порта, с которым мы будем работать[9]. struct sockaddr_in serveraddr;

if ((sockdscr = socket (AF_INET, SOCK_DGRAM, 0)) == -1) { printf («Server error: cannot open socket

»);

return NULL;

} memset (&serveraddr, 0, sizeof(serveraddr));

serveraddr.sin_family = AF_INET;

serveraddr.sin_port = htons (Conf. LOCALPORT);

serveraddr.sin_addr.s_addr = inet_addr (Conf. LOCALADDRESS); if (bind(sockdscr, (struct sockaddr *)&serveraddr, sizeof(serveraddr))==-1) { printf («Server error: cannot bind

»);

return NULL;

}

Как видно из данного части исходного кода программы, локальный IP адрес и номер порт берутся из конфигурации. После инициализации нить должна войти в режим ожидания и реагировать только на два события приход пакета и получение запроса на отправку пакета. Данное действие выполняется с помощью функции select. Она предназначена для слежения за несколькими дескрипторами одновременно на предмет их готовности к чтению, записи или если произошла ошибка.

#include int select (int nfds, fd_set *readfds, fd_set *writefds, fd_set *errorfds, struct timeval *timeout);

Первый параметр в этой функции - максимальный номер рассматриваемых дескрипторов. Три следующих параметра - массивы дескрипторов. Первый содержит номера дескрипторов, которые нужно наблюдать на предмет возможности чтения из него, второй на предмет возможности записи в него и третий на предмет возникновения в них ошибок. Последний параметр задает временной интервал, через который функция должна закончиться, если не произойдет никакого события. Данный параметр позволяет использовать данную функцию как таймер. В случае срабатывания какого-либо события возвращается число сработавших дескрипторов, и в массивах остаются только эти сработавшие дескрипторы. При выходе по таймауту функция возвращает ноль. В случае ошибки возвращается -1.

Вся нить, таким образом, представляет собой выполнение функции select, которая проверяет на возможность чтения из дескриптора порта и читающего конца pipe, передающего данные в эту нить. Т.к. выход по таймауту в данном случае нам не нужен, пятым параметром передается NULL.

FD_SET (sockdscr, &rfds); /* Добавление в массив дескриптора порта*/

FD_SET (pipefd[0],&rfds); /* Добавление в массив дескриптора pipe*/ retval=select (1024,&rfds, NULL, NULL, NULL);

if (SOCKET_ERROR == retval) {

/* Обработка ошибки*/

} if (FD_ISSET (sockdscr, &rfds)) {

/* Действия, выполняемые при приходе пакета */

} if (FD_ISSET (pipefd[0], &rfds)) {

/* Действия, выполняемые при получении запроса */

}

В случае прихода пакета он целиком передается нити распределения пакетов (вместе с ним передаются также IP адрес и номер порта от

Вывод
В данном разделе были рассмотрены общие принципы создания программы реализации протокола ISAKMP. Рассмотрены способы использования многонитевых структур программы, указан необходимый набор функций для создания нити и обеспечения передачи данных между нитями. Представлена структура программы, описаны использующиеся в ней нити, порядок их реализации и интерфейс общения между ними. Рассмотрен порядок разработки программы и методика проведения тестирования программы в процессе ее создания.

Технология реализации протокола ISAKMP

Исходя из технического задания, данная реализация протокола ISAKMP должна содержать 4 обмена (Main Mode, Aggressive Mode, New Group Mode и Quick Mode) и должна поддерживать 4 метода аутентификации (методом заранее известного секретного ключа, цифровой подписью с помощью алгоритмов DSS и RSA, шифрования открытым ключом с помощью алгоритма RSA). Весь процесс написания программы можно разбить на 6 частей: Подготовительная часть

Реализация Main mode с методом аутентификации заранее известного секретного ключа

Реализация Quick Mode

Реализация остальных методов аутентификации для Main Mode

Реализация Aggressive Mode со всеми методами аутентификации

Реализация New Group Mode

При таком порядке написания программы сначала будет написана версия с минимальной функциональностью (для простейшей конфигурации протокол будет работать уже после третьего этапа), а уже затем происходит выполнение всех требований технического задания.

Подготовительная часть

Подготовительная часть включает в себя написание вспомогательных модулей, которые можно выделить в отдельные задачи.

Реализация криптоалгоритмов. Включает в себя написание функции реализующих алгоритмы шифрования DES и Triple DES, алгоритмы хеширования MD5 и SHA и алгоритмы с открытым ключом RSA и DSA. Реализация включает в себя проверку правильности работы функций. Для алгоритмов шифрования сначала происходит проверка работы функций самих с собой (шифрование произвольный текст, расшифрование и проверка идентичность), затем проверка работоспособности с другими реализациями данного алгоритма и проверка тестовых последовательностей. Для алгоритмов хеширования возможна только проверка тестовых последовательностей.

Реализация алгоритма Diffie-Hellman. Включает в себя написание функций подсчета открытого ключа по известному секретному ключу и расчета общего ключа для любых заданных параметров алгоритма. Тестирование сначала производится между собой (расчет двух пар ключей, расчет общего ключа для обеих сторон и проверка идентичности), затем с другими реализациями данного алгоритма.

Работа с сетью. Включает в себя функции инициализации и закрытия портов, отсылки и приема пакетов. Тестирование заключается в проверке идентичности отправленных и полученных пакетов.

Конфигурация. Включает в себя считывание конфигурации из указанного файла, проверка ее правильности и заполнение, согласно ей, внутренних структур.

Лог. Включает в себя функции инициализации и записи в лог-файл. Функция записи пишется с расчетом на много нитевую программу.

Работа с буферами переменной длины. Сам буфер представляется в виде структуры. Функции реализуют следующие действия: создание, очистка, копирование в буфер и из него, добавление информации в буфер, распечатка, удаление. При тестировании следует написать тестовую программу, реализующую все требуемые действия.

Работа с сертификатами. Реализуются функции загрузки сертификата из файла, проверка правильности сертификата, получение информации из сертификатов. В список перечисленных действий не входит создание сертификатов, т.е. нам придется сертификаты, созданные третьей стороной. При тестировании происходит проверка работоспособности всех функций, причем все тесты должны проходить для сертификатов, полученных из разных мест.

Проверка структуры пакета. Протокол ISAKMP четко определяет структуру пакетов. Тестирование осуществляется путем ручного задания правильно и неправильно сформированных пакетов.

Часть из вышеперечисленных задач можно делать параллельно с выполнением основной задачи (например, работа с сертификатами нужно лишь при реализации методов аутентификации цифровой подписью и шифрованием открытым ключом).

Реализация Main mode c методом аутентификации заранее известного секретного ключа

Main mode состоит из 6-и посылок пакетов - 3 от каждой из сторон (инициатора и ответчика). Также здесь реализуется прием задания для стороны инициатора.

Реализация на данном этапе только одного из 4 методов аутентификации продиктовано желанием получить сначала работающую версию, а уже затем добавлять в нее необходимую функциональность. Не смотря на это, в программе учитываются все методы аутентификации, но вместо всех не нужных подставляются «заглушки».

Каждый из обменов реализуется сразу как для инициатора, так и для ответчика. После выполнения каждого из обменов происходит тестирование. Сначала пробуется работа двух реализаций, а затем тестируется работа с другой реализацией протокола.

Порядок реализации данного этапа следующий: Получение задания на установление соединения со стороны инициатора, проверка необходимости проведения первой фазы (возможно для данного партнера ISAKMP SA уже создана и тогда сразу переходим ко второй фазе);

Составление и отсылка инициатором первого. Наиболее сложным здесь является запись политики заданной в конфигурационном файле в структуру пакета ISAKMP;

Прием и разбор первого пакета ответчиком. Выбор из предложенной политики приемлемого варианта. Составление и отсылка второго пакета, содержащего выбранную политику;

Прием и разбор второго пакета инициатором. Проверка корректности выбранной политики. Получение секретного и отрытого ключей для алгоритма Diffie-Hellman с параметрами, оговоренными в политике. Составление и отсылка третьего пакета, содержащего свой открытый ключ и Nonce - случайную последовательность для данного соединения;

Прием и разбор третьего пакета ответчиком. Сохранение Nonce и открытого ключа инициатора, вычисление своей пары Diffie-Hellman ключей. Составление и отсылка четвертого пакета, содержащего открытый ключ и Nonce ответчика;

Прием и разбор четвертого пакета инициатором. Вычисление общего ключа для алгоритма Diffie-Hellman с помощью своего секретного ключа и открытого ключа ответчика. Получение аутентифицирующей информации Составление пятого пакета, содержащего информацию, идентифицирующую и аутентифицирующую инициатора. Вычисление ключей шифрования. Шифрование полученного пакета с помощью алгоритмов, оговоренных в политике, и только что вычисленных ключей. Отсылка зашифрованного пакета;

Прием пятого пакета ответчиком. Вычисление общего ключа для алгоритма Diffie-Hellman. Вычисление ключей шифрования. Расшифровка пакета и его разбор. Проверка идентифицирующей информации инициатора. Вычисление аутентифицирующей инициатора информации и сравнение со значением находящимся в пакете. Вычисление информации идентифицирующей и аутентифицирующей ответчика. Составление, шифрование и отсылка шестого пакета;

Прием шестого пакета инициатором. Расшифровка пакета и проверка информации идентифицирующей и аутентифицирующей ответчика.

Результатом первой фазы становиться ISAKMP SA, которая включает в себя алгоритмы, о которых стороны договорились во время обмена политиками, и ключевая информация, которая считается при следующих обменах. ISAKMP SA используется для защиты всех последующих обменов.

Ошибки, всплывающие в процессе работы и при тестировании, можно разделить на ошибки влияющие на работоспособность программы (критические ошибки периода исполнения, ошибки доступа к ресурсам - т.е. когда программа прекращает свою работу) и ошибки связанные с реализацией протокола (неправильно составленный пакет, неправильный разбор пришедшего пакета и т.д.). Ошибки первого типа в основном обнаруживаются с помощью отладчика. Ошибки второго типа обнаружить сложнее, т. к. зачастую они скрываются в логике программы. Первым шагом при их поиске является тщательное изучение логов с обеих сторон, так как неправильная реакция на пришедший пакет на одной из сторон может быть вызвана не соблюдением правил составления пакета с другой стороны. Возможно, в процессе анализа потребуется сделать лог более подробным для всего процесса установления соединения или для отдельных моментов. В результате анализа лога должно быть найдено место, где программа повела себя неправильно. Если ошибка, вызвавшая это неправильное действие очевидна, то она исправляется. Иначе ее поиск продолжается, но уже с помощью отладчика.

После написания всех трех обменов происходит тестирования Main mode в целом. Сначала тестируется работа двух реализаций программы в роли и инициатора и ответчика. Затем тестируется совместимость с другими реализациями протокола (в процессе разработки для тестирования совместимости использовался сервер www.ssh.fi). Тестирование включает в себе проведение одиночного соединения и сразу нескольких (причем каждая из сторон в разных соединениях играет разную роль), проведение удачных и неудачных соединений. Также в процессе тестирования проверяется одинаковая работа программы на разных процессорах (Sun Sparc и Intel x86).

Реализация Quick mode

Quick Mode, представляющий собой вторую фазу установления соединения, состоит из 3-х посылок пакетов - две со стороны инициатора и одна со стороны ответчика. Порядок разработки и тестирования такой же, как на предыдущем этапе. Данный режим проходит под защитой ISAKMP SA, полеченной во время первой фазы.

На этом этапе сначала реализуется рабочий минимум (т.е. без повторного обмена ключевой информацией и посылки идентификационной информации), а затем, когда этот минимум будет полностью оттестирован, доделываются остальные части. Таким образом, порядок реализации данного этапа будет следующим: Получение инициатором из конфигурационного файла политики для второй фазы. Составление первого пакета, содержащего предлагаемую политику и Nonce. Вычисление значения хэш-функции от пакета, добавление этого значение в пакет и шифрование пакета. Отсылка пакета ответчику.

Прием пакета, расшифрование и проверка целостности путем вычисления значение хеш-функции от пакета и сравнение с присланным значением. Выбор из присланной политики приемлемого варианта политики. Составление второго пакета, содержащего выбранную политику и свой Nonce. Вычисление значения хеш-функции от пакета, шифрования пакета и отсылка его инициатору.

Прием инициатором второго пакета. Расшифрование пакета и проверка целостности. Проверка корректности выбранного варианта политики. Вычисление значения хеш-функции от Nonce-ов. Составление третьего пакета, его шифрование и отсылка ответчику. Вычисление выходных результатов.

Прием ответчиком третьего пакета. Расшифровка пакета, вычисление значения хеш-функции от Nonce-ов и сравнение с присланным значением. Вычисление выходных результатов.

Если в конфигурации указана необходимость в обмене ключами осуществить расчет пар ключей с каждой из сторон, обмен открытыми ключами и получение общего ключа аналогично тому, как это делалось на предыдущем этапе. Также учесть наличие общего ключа при расчете выходных результатов.

Если в конфигурации указана необходимость посылки идентификационной информации, то со стороны инициатора обеспечить включение этой информации в первый пакет, а со стороны ответчика ее проверку.

Все мероприятия связанные с тестированием проводятся также как и на первом этапе. Должны проводиться тесты после реализации каждого взаимного обмена и финальные тесты, включающие в себя одновременное проведение нескольких соединений, использование различных конфигураций (провести вторую фазу в разных объемах), тестирование с другими реализациями протокола и тестирование работы программы на разных процессорах.

Реализация остальных методов аутентификации для Main mode

На данном этапе добавляются возможные методы аутентификации для первой фазы. Все эти методы используют алгоритмы шифрования с открытым ключом и сертификаты как способ передачи открытых ключей. Следует заметить, что необходимость в функциях работы с сертификатами и реализациях алгоритмов DSA и RSA встречается впервые именно на этом этапе, что позволяет распараллелить работы над этими задачами.

Как и на предыдущих этапах, сначала реализуется рабочий минимум, который включает в себя собственно вычисление и проверку аутентификационной информации, затем добавить возможности обмена сертификатами.

Порядок реализации данного этапа следующий: Реализация ветвления по разным методам аутентификации в зависимости от договоренной политики;

Реализация методов аутентификации с помощью подписи алгоритмами DSA и RSA. Включает в себя вычисление подписи каждой из сторон для специально вычисляемого значения хеш-функции и проверка подписи на другой стороне. Сертификаты для проверки подписи другой стороны задаются явно.

Реализация метода аутентификации шифрованием открытым ключом алгоритмом RSA. Сертификаты для расшифрования также задаются явно.

Реализация обмена сертификатами. Включает в себя реализацию запроса сертификата другой стороны и отсылку своего сертификата на запрос и без запроса. Информация о том надо ли отсылать свой сертификат, запрашивать ли чужой и т.п. берется из конфигурационного файла.

После реализации данного этапа проходит тот же набор тестов, что проводился по окончанию второго этапа. Но в данном случае делается упор на правильность работы именно вновь добавленных методов аутентификации. Особое внимание уделяется правильной диагностике ошибок возникающих при не нахождении сертификатов и получении сертификат, чей тип отличается от ожидаемого значения.

Реализация Aggressive mode со всеми методами аутентификации

На этом этапе реализуется другой режим для проведения первой фазы. От Main mode его отличает меньшее количество посылаемых пакетов, но вместе с этим большее количество информации передаваемых в пакетах и большая трудоемкость при их обработке. Реально данный режим реализуется на основе кода написанного для Main mode путем перестановки основных функций, но при этом надо помнить, что простая перестановка не поможет и требуется некий дополнительный анализ. Например, в политике, передаваемой инициатором, не может быть предложен выбор между различными Oakley группами, т. к. в этом же пакете посылается публичный ключ однозначно определяющий группу. Все подобные проверки должны проводиться для Aggressive Mode.

Порядок реализации этапа следующий: Реализация ветвления между Main и Aggressive режимами. Для инициатора вид режима определяется конфигурацией. Ответчик проверяет приемлемость предложенного режима, также основываясь на конфигурации и, в случае не приемлемого значения, может отказаться продолжать обмены. Инициатор должен в этом случае уметь предложить другой режим, конечно, если это позволяет реализация.

Реализация метода аутентификации заранее известного секретного ключа. После реализации проводят тесты, проводимые на втором этапе, но с использованием Aggressive mode.

Реализация остальных методов аутентификации. Этапы реализации и тесты аналогичны такие же, как на четвертом этапе.

Как уже упоминалось выше, тесты во время разработки и по ее окончанию аналогичны тестам проводимых на втором и четвертом этапах, но с упором на использование различных режимов в первой фазе. Особо стоит обратить внимание на повторную попытку инициатора провести соединение в другом режиме после отказа со стороны ответчика.

Реализация New Group Mode

Данный режим предназначен для согласования нестандартных Oakley групп и заключается лишь в обмене политиками. Но основная сложность заключается во встраивании использования этого режима и правильном использовании результатов работы режима во второй фазе. Сам режим, также как и Quick mode, проходит под защитой ISAKMP SA.

Порядок реализации этапа следующий: Реализация со стороны инициатора ответвления на New Group mode в зависимости от конфигурации. Должна быть предусмотрена проверка существования уже созданной нестандартной Oakley группы.

Создания инициатором пакета содержащего информацию о предлагаемой группе, подсчет значения хеш-функции от этого пакета, шифрования пакета (с помощью алгоритмов и ключей из ISAKMP SA) и отсылка пакета;

Получение пакета, его расшифровка и проверка целостности. Проверка приемлемости предлагаемой группы. Составление ответного пакета, подсчет значения хеш-функции, шифрование и отсылка этого пакета. Сохранение информации о группе для второй фазы;

Получение пакета, его расшифровка и проверка целостности. Проверка корректности присланной информации. Сохранение информации о группе для второй фазы.

Реализация использования во время второй фазы групп, о которых договаривались во время New Group mode.

При тестировании проверяется правильная работа в New Group mode и инициатора, и ответчика. Особое внимание стоит уделить правильной работе программы при попытке договориться о нескольких Oakley группах.

В данном разделе был рассмотрен порядок реализации протокола ISAKMP, предложен вариант разбиения общей задачи на подзадачи, даны рекомендации по организации работ над этими задачами и предложен порядок проведения тестов.

Следует заметить, что данный порядок реализации протокола ISAKMP был предложен в расчете на определенные технические требования к программе и в расчете на работу одного человека. При других требованиях или если количество работающих над программой человек изменяется, порядок реализации протокола может существенно измениться как на уровне этапов, так и на более низких уровнях.

Сегментация рынка пользователей программы, реализующей протокол ISAKMP

Успех продвижения на рынке новых товаров во многом зависит от всестороннего исследования требований рынка. Исследуемая информация касается спроса на товары и услуги различных уровней, уже имеющихся и потенциально возможных конкурентов, а также требований, предъявляемых потребителями. Сбор подобной информации требует значительных затрат времени и средств. Это заставляет предприятия нацеливаться на отдельные части рынка, которые представляют собой сегменты групп потребителей с примерно общими требованиями. Поиск таких однородных сегментов потребителей среди различных вариантов требований, предъявляемых к товару, называется сегментацией рынка, а данный найденный участок рынка - сегментом рынка.

При разумном делении рынка на сегменты все инструменты маркетинга внутри него могут быть оптимально скоординированы. Именно поэтому сегментация рынка считается очень важным аспектом деятельности предприятия.

Методика расчета сегментации рынка

При первичной сегментации всего рынка целесообразно выделить сегменты товаров потребительского рынка или производственного назначения. Такая классификация важна, поскольку подчеркивает различия в характеристиках продуктов и последствия для маркетолога.

Для дальнейшего деления рынка на сегменты можно воспользоваться различными критериями в зависимости от следующих факторов: географического положения потребителей (регион, страна);

типа потребителя (величина предприятия, интенсивность потребления, отрасль, место в производственном процессе);

типа процесса, для которого приобретается продукция (административная деятельность, движение товара, производственный процесс);

покупательского спроса (клиент / потенциальный клиент, связь с поставщиком, частота и величина закупок);

На рынках сбыта товаров широкого потребления используют другие критерии. Классическими являются следующие показатели: социально-экономические (образования, доходы);

демографические (возраст, пол, состав семьи);

географические

Однако следует учитывать, что всех потребителей на рынке не так-то легко разделить по категориям. Поведение потребителя в последнее время становиться все более дифференцированным, возникают различные «стили жизни» внутри общества.

Для формирования сегментации рынка используются элементы таксономического анализа - построение диаграмм Чекановского. Исходным шагом, предопределяющим правильность конечных результатов, является оформление матрицы наблюдений.

Признаки, включенные в матрицу, могут быть неоднородны, поскольку описывают разные свойства объектов. Кроме того, различаются единицы их измерения. Поэтому надлежит выполнить предварительное преобразование, которое заключается в стандартизации признаков.

Таблица 1. Неупорядоченная диаграмма Чекановского

Номера единиц 1 2 …

1 X X

2 X

… … … … … w X

В приведенной неупорядоченной диаграмме очередность записи единиц целиком случайна. На это указывает явственный разброс символов, обозначающих разницу между изучаемыми единицами: наименьшее численное расстояние - C; наибольшее расстояние, т.е. пары единиц, наиболее разнящиеся между собой, - Для их линейного упорядочения следует произвести перегруппировку знаков C и. Перегруппировка должна выполняться таким образом, чтобы указанные знаки оказались как можно ближе к главной диагонали диаграммы. С этой целью строки и столбцы таблицы переставляются до тех пор, пока не получится упорядоченная диаграмма.

Поиск сегментов рынка для программы установки защищенных сетевых соединений с помощью протокола ISAKMP

Взрывной характер развития компьютерных технологий и резко возросшее количество действий совершаемых с помощью глобальной сети Internet (развитие электронной торговли, предоставление компаниями через сеть ряда услуг для своих клиентов и т.д.) привело к резкому увеличению объемов информации передаваемой по сети. Также претерпел изменения и качественный состав передаваемой информации - возросла доля конфиденциальной информации. Вместе с тем возникла необходимость аутентификации другой стороны при всех вышеперечисленных действиях. Все это привело к увеличению рынка программных продуктов предназначенных для защиты информации в сети. Представленная программа сама по себе не производит непосредственно защиту передаваемой информации. Задачей программы является аутентификация другой стороны и подготовка информации, необходимой для непосредственной защиты передаваемой информации.

Выделим потребителей программы: Системы авторизации доступа, т.е. система, которой требуется провести идентификацию и аутентификацию пользователей. Примером может служить сервер компании, предоставляющий ряд услуг клиентам компании. Программа в данном случае поможет отсеять постороннего посетителя от клиента.

Структура доступа для внутри корпоративной сети. Программа поможет произвести ограничение доступа к информации различных отделов и подразделений. Например, рядовые работники имеют доступ к рабочим серверам компании, но не могут воспользоваться информацией бухгалтерии. Также возможно сегментирование информации внутри отдельного подразделения. Например, отдел маркетинга может воспользоваться информацией из бухгалтерии о финансовом состоянии компании, но не имеет доступ к информации о заработной плате сотрудников.

Виртуальная корпоративная сеть. Обычно корпоративная сеть представляет собой замкнутую, самодостаточную локальную сеть, которая общается с внешним миром через компьютер фильтрующий проходящую через него информацию. При этом никакая секретная информация из локальной сети не попадает во внешнюю сеть. Недостатком данного подхода являлась то, что все участники этой сети должны были находиться в непосредственной близости друг от друга. Программа позволяет построить виртуальную защищенную сеть на основе глобальной сети Internet, шифруя всю информацию, передаваемую между участниками этой виртуальной сети. При таком подходе можно организовывать сеть даже между людьми, находящимися в разных странах.

Сеть банкоматов. Программа поможет создать защищенные соединения с банком для обмена информации о произведенных операциях.

Межкорпоративная сеть и сеть для связи с филиалами компании. Программа обеспечивает создание защищенного соединения для передачи информации между внутренними сетями разных компаний или разных филиалов одной компании (это может быть или локальная сеть, или виртуальная защищенная сеть).

Рассмотрим параметры программы, которые влияют на ее функциональность и на способ использования программы: Простота настроек и обслуживания. Определяет уровень теоретической подготовки оператора программы.

Объем настроек. Показывает, сколько имеется параметров для настройки программы. Больший объем настроек позволяет более гибко настроить программу.

Полнота методов аутентификации. Сколько реализовано методов аутентификации и их функциональная полнота.

Полнота сведений о процессе работы программы. Способ сохранения этих сведений, способ задания количественных и качественных параметров обрабатываемых событий.

Полнота реализации протокола ISAKMP и совместимость с продуктами третьей стороны.

X= Z=

По формуле (4) рассчитаем матрицу расстояний: C=

Разбиваем полученную матрицу на классы, где X - соответствует наименьшему численному расстоянию между изучаемыми задачами (0-1) и получаем неупорядоченную матрицу Чекановского: 1 2 3 4 5

1 X X X

2 X X X

3 X

4 X X X

5 X

Произведя перегруппировку строк и столбцов (поменяли местами строки / столбцы 3 и 4) получаем упорядоченную диаграмму: 1 2 4 3 5

1 X X X

2 X X X

4 X X X

3 X

5 X

В результате выполненных вычислений выделился сегмент пользователей программы, включающий в себя пользователей использующих программу для создания систем авторизации доступа, систем разграничения доступа и сетей банкоматов.

В результате сегментации рынка пользователей программы установления защищенных сетевых соединений с помощью протокола ISAKMP был выделен объединенный сегмент рынка, включающий в себя использование программы для создания систем авторизации доступа, систем разграничения доступа и сетей банкоматов. Для этого сегмента характерны повышенные требования к реализации методов аутентификации, системе протоколирования произошедших событий и объему возможных настроек программы.

Разработка мероприятий по безопасности работы с монитором ПК

Вычислительные комплексы на базе персональных ЭВМ являются одним из основных средств труда разработчика на всех этапах создания программы (проектирование, написание, тестирование и отладка).

Рассмотрев факторы обитаемости в данной производственной среде, можно выделить следующие факторы, оказывающие вредное воздействие на организм человека.

Эмиссионные: Повышенный уровень электромагнитных излучений: низкочастотного электромагнитного поля (51 ц-400КГЦ);

низкоэффективного (мягкого) рентгеновского излучения (при напряжении на ЭЛТ 15 КВ и выше);

Повышенный уровень электростатического поля;

Эргономические: Не эргономичность визуальных параметров дисплея. Не эргономичность конструкции дисплея и клавиатуры;

Не эргономичность рабочего стола и рабочего стула (кресла);

Физические: Повышенная температура, пониженная влажность воздуха рабочей зоны;

Повышенный уровень шума на рабочем месте;

Недостаточная освещенность рабочих поверхностей;

Повышенная яркость света в плоскости экрана дисплея;

Прямая и отраженная блескость;

Повышенная пульсация освещенности от газоразрядных источников света;

Ионизация воздуха;

Психофизиологические: нервно-психические перегрузки: перенапряжение зрительного анализатора;

умственное перенапряжение;

эмоциональные перегрузки;

монотонность труда;

Физические перегрузки: статические перегрузки костно-мышечного аппарата;

локальные динамические перегрузки мышц кистей рук;

Источником значительной части перечисленных выше вредных воздействий является монитор персональной ЭВМ.

Электромагнитное излучение монитора ЭВМ

Основным источником эргономических проблем, связанных с охраной здоровья людей, использующих в своей работе персональные компьютеры, являются дисплеи (мониторы), особенно дисплеи с электронно-лучевыми трубками. Они представляют собой источники наиболее вредных излучений, неблагоприятно влияющих на здоровье операторов. Электромагнитные излучения рабочей аппаратуры обусловлены некачественным экранированием источников излучения в аппаратуре. Кроме этого, оператор подвергается воздействию излучения от рабочей поверхности электроннолучевой трубки.

Приложение общих положений теории электродинамических явлений к конструкции конкретных электрических приборов, в частности монитора ЭВМ, позволяет сделать некоторые выводы относительно источников и конфигурации электрических и магнитных полей, излучаемых этими приборами. Известно, что электрическое поле излучается теми частями электрических установок, в которых используются высокие напряжения, а магнитное поле излучается сильными токами.

В компьютере высокие напряжения используются в ускорительной системе электроннолучевой трубки (ЭЛТ) монитора, а сильные токи текут в системе управления электронными лучами трубки и цепях блока питания. Именно эти части монитора ЭВМ и являются основными источниками электромагнитного излучения. Силовые линии электрического поля можно представить начинающимися в области вблизи заднего конца ЭЛТ и оканчивающимися на поверхностях, находящихся вблизи монитора, в том числе и на поверхности тела пользователя ЭВМ, сидящего перед компьютером.

Силовые линии магнитного поля образуют замкнутые конфигурации, начинающиеся и заканчивающиеся на магнитных кольцах фокусирующей системы ЭЛТ. Непосредственно перед экраном монитора плотность магнитного потока достигает величин единиц МКТЛ, но быстро убывает с расстоянием от монитора.

Обнаружено, что: Электромагнитное поле возбуждается на частотах кадровой (60 Гц) и строчной (22 КГЦ) разверток и их гармоник;

Электрическое поле ВДТ близко к электрическому полю точечного заряда, а магнитное - к полю магнитного диполя, находящихся в геометрическом центре ВДТ. При этом частоту 60 Гц излучает система токов, близкая к горизонтальному диполю, а 22 КГЦ - к вертикальному;

При удалении от экрана ВДТ поля быстро спадают. Например, электрическое поле спадает в ~ 40 раз при удалении от экрана на расстояние 1,25 м.

Длительное воздействие на организм человека электромагнитных излучений, превышающих допустимые нормы, может привести к некоторым функциональным изменениям в организме или даже повреждениям тканей и органов. Симптомами являются головная боль, нарушение сна, повышенная утомляемость. Функциональные изменения, вызываемые электромагнитными излучениями, способны накапливаться в организме.

При выборе монитора следует обращать внимание на наличие на шильдике (табличка с перечнем заводских параметров изделия) надписи о том, что данная модель прошла тестирование на предмет соответствия ТСО 95 (стандарт Шведской конференции профсоюзов) или MPR II (стандарт Шведского национального комитета по защите от излучений). Желательно также получить сведения о наличии Гигиенического Сертификата либо сертификатов, выданных другими организациями. В то же время, следует иметь в виду, что разброс возможных уровней электромагнитного излучения мониторов одной и той же модели может достигать 50%.

Пользователям персональных компьютеров, желающим снизить уровень облучения переменными магнитными полями, следует расположить мониторы так, чтобы расстояние до них составляло величину, равную расстоянию вытянутой руки (с вытянутыми пальцами). Поскольку магнитные поля сзади и по бокам большинства мониторов значительно сильнее, чем перед экраном, пользователи должны располагать свои рабочие места на расстоянии не менее 1.22 м от боковых и задних стенок других компьютеров. Также для защиты от электромагнитных излучений рекомендуется использовать специальные защитные экраны. Они изготавливаются из особого стекла и устанавливаются между рабочей поверхностью монитора и оператором. Такая защита обеспечивает задержку от 30 до 90 процентов всех вредных излучений. Такого же результата можно добиться путем удаления источника излучения от оператора. Тем не менее, не рекомендуется проводить за экраном дисплея более 3-х часов в день.

Электроопасность и пожароопасность

Мониторы ПК питаются от сети переменного тока напряжением 220 В с частотой 50 Гц, что являет само по себе серьезную опасность для жизни и здоровья человека.

Действие электрического тока на живую ткань носит разносторонний характер: термическое воздействие, электрическое и биологическое действия. Все это ведет к электрическим травмам и электрическим ударам, что в свою очередь может привести к нарушению и даже к полному прекращению жизнедеятельности организма.

Исход воздействия электрического тока на организм зависит от ряда факторов, в том числе и от электрического сопротивления тела, величины и продолжительности воздействия тока, рода и частоты тока. Пороговый ощутимый ток составляет 0,6…1,5 МА для постоянного тока.

Безопасный ток, который может в течение длительного времени проходить через человека, не вызывая никаких ощущений, составляет приблизительно 50 МКА (для переменного тока с частотой 50 Гц) и 100 МКА (для постоянного тока). При увеличении величины тока до 10…15 МА боль становится едва переносимой, и судороги мышц становятся настолько значительными, что человек не в состоянии их преодолеть. Таким образом, пороговый не отпускающий ток составляет 10…15 МА для частоты 50 Гц и 50…80 МА для постоянного тока. Ток величиной 100 МА (частотой 50 Гц) и 300 МА (постоянный ток) и более вызывают прекращение деятельности сердца через 1-2 с.

Помещение для работы с ЭВМ и с ее внешними устройствами обычно относят к категории помещений с повышенной опасностью, т. к. имеется возможность поражения электрическим током. Чаще всего источниками поражения являются блоки ЭВМ, корпуса устройств и приборов в случае возникновения неисправности (например, при нарушении защитного заземления или изоляции проводов, а также при применении неправильных приемов включения в сеть и выключения из сети вилок электропитания).

Защитой от прикосновения к токоведущим частям электроустановок служит: изоляция проводников;

использование защитных кожухов;

использование инструментов с изолирующими ручками при ремонте оборудования ЭВМ.

Проведем расчет сопротивления изоляции.

Правила электробезопасности устанавливают нормы сопротивления изоляции и требования к ее диэлектрической прочности. Для электрических машин и аппаратов минимальное значение сопротивления изоляции определяется по формуле: [МОМ], где U - напряжение, В;

N - мощность установки, КВТ.

Отсюда следует, что при напряжении питания 220 В и мощности монитора 250 Вт сопротивление изоляции должно быть не менее чем: .

Очень важным организационным мероприятием является также проведение обязательного и периодически повторяемого инструктажа по электро - и пожаробезопасности всех лиц, которые допускаются к работе на ЭВМ. При проведении периодически повторяемых противопожарных инструктажей необходимо обязательно добиваться, чтобы персонал практически умел пользоваться первичными средствами тушения пожара и средствами связи

Для тушения пожара должны применяться ручные огнетушители и переносные установки. Электросети и электроустановки, которые находятся под напряжением, тушить водой нельзя ни в коем случае, т. к. через струю воды может произойти поражение электрическим током. Именно поэтому для тушения пожара, который возник изза неисправности электроприборов, применяют только пенные огнетушители.

Возможность быстрой ликвидации пожара во многом зависит от своевременного оповещения о пожаре. Обычно на предприятиях электронной промышленности весьма распространенным средством оповещения является телефонная связь.

Требования к освещению при работе с монитором ПК

Сохранность зрения человека, состояние его центральной нервной системы и безопасность на производстве в значительной мере зависят от условий освещения.

Производственное освещение должно удовлетворять следующим требованиям: 1. Освещенность должна соответствовать характеру труда, который определяется объектом различия, фоном, контрастом объекта с фоном.

2. Необходимо обеспечить достаточно равномерное распределение яркости на рабочей поверхности, а также в преде

Список литературы
Единая система программной документации ГОСТ 19.001-77, 19.002-80, 19.003-80, 19.101-77, 19.102-77, 19.505-79.

Зубов Н.Н., Пьянзин А.Я. Методические указания к дипломному проектированию по специальности «Программное обеспечение вычислительной техники и автоматизированных систем» /Под ред. В.Ф. Шаньгина; МИЭТ. М., 1990

«Security Architecture for the Internet Protocol» RFC2401 Ноябрь 1998 г.

«Internet Security Association and Key Management Protocol (ISAKMP)» RFC2408 Ноябрь 1998 г.

«The Internet Key Exchange (IKE)» RFC2409 Ноябрь 1998 г.

«The Internet IP Security Domain of Interpretation for ISAKMP» RFC2407 Ноябрь 1998 г.

Bruce Schneier «Applied Cryptography Second Edition: protocols, algorithms, and source code in C» 1996 г.

«Advanced Programming in the UNIX Environment» W. Richard Stevens 1994 г.

«UNIX System V Network Programming» Stephen A. Rago 1994 г.

«Programming with Threads» Steve Kleiman, Devang Shah, Bart Smaalders 1996 г.

Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность
своей работы


Новые загруженные работы

Дисциплины научных работ





Хотите, перезвоним вам?