Прогнозирование урожайности подсолнечника по Краснодарскому краю с применением системно-когнитивного анализа (решение задач прогнозирования и исследования предметной области) - Статья
Исследование особенностей системно-когнитивной модели искусственной экосистемы насаждений подсолнечника Краснодарского края. Рассмотрение и характеристика экранной формы результата прогнозирования будущего сценария изменения урожайности подсолнечника.
Аннотация к работе
Прогнозирование урожайности подсолнечника по Краснодарскому краю с применением системно-когнитивного анализа (решение задач прогнозирования и исследования предметной области)В данной работе предложены технология и методика постановки и решения задачи прогнозирования сценариев изменения урожайности подсолнечника на уровне региона и его районов на основе системно-когнитивной модели, отличающиеся от традиционных: - высокой степенью формализации модели знаний; Впервые проведено исследование системно-когнитивной модели искусственной экосистемы насаждений подсолнечника Краснодарского края, которое корректно считать исследованием самой экосистемы, так как верификация данной модели показала ее высокую адекватность. По мнению авторов на основе этих результатов можно обоснованно сделать главный вывод о том, что найдено новое, ранее не описанное в специальной литературе, общее научное и практическое решение проблемы прогнозирования динамики урожайности подсолнечника по районам Краснодарского края и краю в целом. В основе этого решения - применение методов системно-когнитивного анализа, обеспечивающих как синтез и верификацию системно-когнитивной модели искусственной экосистемы насаждений подсолнечника Краснодарского края, так и решение задач прогнозирования и исследования на ее основе. Осуществлены когнитивная структуризация и формализация предметной области: проанализированы исходные данные для построения системно-когнитивной модели искусственной экосистемы насаждений подсолнечника Краснодарского края, поставлена и решена задача их автоматизированного преобразования к виду, непосредственно воспринимаемому системой "Эйдос" с помощью одного из ее стандартных программных интерфейсов; приведен алгоритм и исходный текст программы, обеспечивающей эти функции, а также результаты ее работы и автоматически сформированные на их основе системой "Эйдос" справочники классов и факторов, а также обучающая выборка.