Проектирование устройств фильтрации - Курсовая работа

бесплатно 0
4.5 68
Обзор программного обеспечения для проектирования устройств фильтрации, исследование их возможностей и свойств, обоснование выбора. Моделирование фильтра на схемотехническом уровне в системе Electronic Workbench в частотной и временной областях.


Аннотация к работе
С помощью машинных программ можно рассчитывать схему любых фильтров, отвечающих заданным техническим требованиям, используя хорошо разработанные методы синтеза. Фактически электрические фильтры так распространены в современной технике, что невозможно представить любой электронный прибор средней сложности, в котором бы не использовался фильтр в том или ином виде. Рассмотрена реализация аналоговых фильтров на пассивных LC-звеньях, активных RC-звеньях и фильтров на переключаемых конденсаторах, т.е. фильтров, обрабатывающих дискретные отсчеты сигналов и поэтому называемых дискретными. Программы FILTERCAD фирмы LINEARX Systems (www.linearx.com) и Filter Wiz фирмы Active Filter Designer (www.schematica.com) предназначены для синтеза аналоговых активных RC-фильтров под управлением Windows. Известно также, что расчеты существенно упрощаются, если ХРЗ является геометрически симметричной: существует некоторая частота щ0 полосы пропускания, значение которой по отношению к частотам щ-D, щ D, щ-S, и щ S удовлетворяет условию геометрической симметрии.В данной курсовой работе спроектирован высокочастотный фильтр восьмого порядка с аппроксимацией Баттерворта. Данный фильтр обладает хорошей стабильностью характеристик и низким выходным полным сопротивлением, однако невозможно достичь высокого значения добротности Q без значительного разброса значений элементов и высокой чувствительности к их изменению.

Введение
Цепи фильтрации сигналов - важная и неотъемлемая часть многих систем связи и электрических контрольно-измерительных устройств. Они служат для формирования частотных каналов в системах коммутации, разделения и преобразования электрических сигналов. С помощью машинных программ можно рассчитывать схему любых фильтров, отвечающих заданным техническим требованиям, используя хорошо разработанные методы синтеза.

Электрический фильтр - устройство, пропускающее электрические колебания одних частот и задерживающее колебания других часто. В более узком смысле фильтры - это основные электронные компоненты многих систем связи, таких, как телефония, телевидение, радиовещание, радио- и звуколокация. Фактически электрические фильтры так распространены в современной технике, что невозможно представить любой электронный прибор средней сложности, в котором бы не использовался фильтр в том или ином виде.

Данная курсовая работа будет направлена на проектирование устройства фильтрации, освоение методики расчета его элементов, построение характеристик. Анализ характеристик во временной и частотной областях позволит сделать некоторые выводы о правильности расчета фильтра на определенных этапах.

В данной курсовой работе будут использованы два вспомогательных программных продукта - это MATHCAD как программа построения различных характеристик и численного расчета выражений, а также Electronic Workbench как оболочка построения принципиальной схемы фильтра и получения тех же характеристик.

1.

Обзор программного обеспечения для разработки ПЛИС

При проектировании электронного устройства прежде всего возникает проблема выбора структуры устройства (структурный синтез), его параметров (параметрический синтез) и его принципиальных схем. Наилучшим образом эти проблемы формализованы и реализованы в программном обеспечении синтеза электрических частотно-избирательных фильтров, предназначенных для оптимальной обработки информационных сигналов на фоне разнообразных помех. Приведем краткий обзор ПО синтеза аналоговых, дискретных и цифровых фильтров.

Наглядный ввод задания на проектирование фильтра в программе Filter Wiz программный моделирование фильтрация устройство

MICROSIM Filter Designer. Программа синтеза аналоговых и дискретных фильтров Filter Designer корпорации MICROSIM (ныне объединилась с ORCAD, www.orcad.com) не входит в известную систему сквозного проектирования электронных устройств DESIGNLAB и функционирует в среде DOS. Однако это не снижает ее ценности, так как результаты синтеза фильтров представляются в виде текстовых описаний макромоделей фильтров и могут быть переданы в схемный редактор DESIGNLAB для включения в состав моделируемого устройства.

В программе Filter Design производится как стандартная аппроксимация частотных характеристик ФНЧ, ФВЧ, ПФ и РФ с помощью полиномов Баттерворта, Чебышева, эллиптических полиномов и полиномов Бесселя, так и синтез фильтров с амплитудно-частотными характеристиками произвольного вида и синтез фазовых корректоров. Рассмотрена реализация аналоговых фильтров на пассивных LC-звеньях, активных RC-звеньях и фильтров на переключаемых конденсаторах, т.е. фильтров, обрабатывающих дискретные отсчеты сигналов и поэтому называемых дискретными. Максимальный порядок фильтров равен 32.

FILTERCAD и Filter Wiz. Программы FILTERCAD фирмы LINEARX Systems (www.linearx.com) и Filter Wiz фирмы Active Filter Designer (www.schematica.com) предназначены для синтеза аналоговых активных RC-фильтров под управлением Windows. Они имеют современный интерфейс, и с ними работать гораздо удобнее, чем с Filter Design. Однако по функциональным возможностям все три программы примерно одинаковы (причем Filter Design обеспечивает синтез несколько большей номенклатуры фильтров). После ввода технического задания на создание фильтра синтезируется передаточная функция фильтра и рассчитываются нули и полюса в s-плоскости (в программе Filter Design при синтезе фильтров на переключаемых конденсаторах в z-плоскости). После выбора типовых звеньев (например, в FILTERCAD имеется 140 вариантов звеньев 1 - 8 порядков, общее число звеньев не ограничивается) рассчитываются параметры их компонентов и чувствительность передаточных функций к их изменениям. Есть возможность переставлять звенья местами, округлять сопротивления резисторов и емкости конденсаторов с точностью 1, 5, 10 и 20% и непрерывно контролировать характеристики фильтра.

Просмотр схемной реализации отдельных звеньев фильтра и их характеристик в программе FILTERCAD

Serenade и Series IV. Синтез фильтров в СВЧ-исполнении обеспечивают пакеты Serenade фирмы Compact Software (www.comsoft.com), Series IV подразделения EESOF компании Hewlett-Packard (www.tmo.hp.com) и MMICAD фирмы Optotek (www.optotek.com). Наибольшими возможностями обладает пакет программ Series IV, имеющий в своем составе программы синтеза E-Syn расчета параметров отрезков линий передачи LINECALC. Программа MMICAD способна рассчитывать фильтры на поверхностных акустических волнах.

SYSTEMVIEW

32-разрядная программа SYSTEMVIEW версии 2.0 фирмы ELANIX (www.elanix.com) значительно отличается от предыдущей версии (см. PC Week/RE, №15/97, с. 62). Во-первых, она переписана на Си (предыдущая версия написана на Visual Basic). Это значительно повысило ее быстродействие, что особенно важно при проведении статистических расчетов. Во-вторых, значительно расширены ее функциональные возможности, в частности в области синтеза передаточных функций аналоговых и цифровых фильтров.

Программа для расчета / моделирования фильтров FILTERLAB

FILTERLAB v бесплатное программное обеспечение, для построения и анализа активных аналоговых фильтров. Программа генерирует схему фильтра с минимальным количеством компонентов по заданным параметрам. Особенности программы FILTERLAB: - Построение активных фильтров 8-го порядка Чебышева, Бесселя (максимум) - Рабочие частоты от 0.1Гц до 10МГЦ Пользователь может указывать: - Полосу пропускания, задерживания и добротность фильтра - Минимальный коэффициент пульсаций - Линейность задержки фазы и др. После получения результата FILTERLAB строит АЧХ активного фильтра. Программа позволяет изменять номиналы конденсаторов сгенерированной схемы, затем программа автоматически пересчитывает значения остальных компонентов. Это может быть необходимо при подборе реальных элементов. FILTERLAB генерирует Spice модель полученного активного фильтра для последующего анализа конструкции в других программах. FILTERLAB может быть использован для построения сглаживающих фильтров работающих совместно ЦАП. При этом программе необходимо указать разрешающую способность ЦАП и скорость дискретизации.

В заключение упомянем программу синтеза передаточных функций цифровых фильтров с конечными и бесконечными импульсными характеристиками Digital Filter Design, созданную в виде исполняемого кода с помощью утилиты Application Builder программы LABVIEW корпорации National Instruments (www.natinst.com).

2. Метод проектирования устройств фильтрации по рабочим параметрам

Проектирование ФНЧ по методу рабочих параметров. При проектировании ФНЧ по методу рабочих параметров исходной является характеристика рабочего затухания (ХРЗ) . Общий вид ХРЗ ФНЧ представлен на рисунке 2.1. Жирной линией показана ХРЗ идеального ФНЧ. ХРЗ реального ФНЧ имеет три области: I - полоса пропускания (0-WD); II - переходная область (WD-WS); III - полоса задерживания (WS-Ґ). Здесь: WD - граничная частота полосы пропускания (частота среза) ФНЧ; WS - граничная частота полосы задерживания (частота гарантированного затухания в полосе задерживания); AD - неравномерность ХРЗ в полосе пропускания; AS - гарантированное затухание в полосе задерживания. Характеристика считается заданной, если известны все приведенные параметры.

Рис. 2.1 Общий вид характеристики рабочего затухания ФНЧ

На первом этапе проектирования необходимо найти такие параметры нормированной ХРЗ, которые позволят выбрать из справочной литературы либо найти путем аппроксимации математическую модель ФНЧ-прототипа. На втором этапе осуществляется операция денормирования коэффициентов математической модели ФНЧ-прототипа. Затем (при необходимости) производится расчет и построение частотных характеристик денормированной математической модели ФНЧ, которая сравнивается с заданной ХРЗ ФНЧ.

Нормирование оси частот производится к частоте среза проектируемого ФНЧ. При этом ось частот w преобразуется в нормированную ось , частота гарантированного затухания WS преобразуется в нормированную частоту , а частота среза

WD - .

Далее по известным параметрам AD, AS, ?S, а также учитывая вид выбранной аппроксимации ХРЗ идеального ФНЧ (Баттерворта, Чебышева, Золотарева-Кауэра и др.), из справочной литературы находят операторную передаточную функцию КФНЧ(Р) ФНЧ-прототипа. Затем выполняют операцию денормирования модели КФНЧ(Р). Она соответствует замене в выражении для КФНЧ(Р) переменной p на p/WDG, где WDG - нормирующая частота (граничная частота полосы пропускания ФНЧ). Операция денормирования не добавляет новых коэффициентов, а лишь изменяет значения существующих в соответствии с нормирующей частотой. Как следствие, вид частотных характеристик остается таким же, как в случае нормированных математических моделей, изменяется лишь масштаб по оси абсцисс.

Проектирование ФВЧ по методу рабочих параметров. Исходной при проектировании ФВЧ по методу рабочих параметров, как и в случае ФНЧ, является ХРЗ . Общий вид ХРЗ ФВЧ представлен на рис. 2.2. Жирной линией показана ХРЗ идеального ФВЧ.

Рис. 2.2 - общий вид характеристики рабочего затухания ФВЧ

ХРЗ реального ФВЧ имеет три области: I - полоса задерживания (0-WS); II - переходная область (WS-WD); III - полоса пропускания (WD-Ґ). Здесь: WD - граничная частота полосы пропускания (частота среза) ФВЧ; WS - граничная частота полосы задерживания (частота гарантированного затухания); AD - неравномерность ХРЗ в полосе пропускания; AS - гарантированное затухание в полосе задерживания. Характеристика считается заданной, если известны все приведенные параметры.

Этапы проектирования ФВЧ те же, что и при проектировании ФНЧ, за исключением дополнительного этапа преобразования модели ФНЧ-прототипа в модель ФВЧ.

Нормирование оси частот производится к частоте среза проектируемого ФВЧ. При этом ось частот w преобразуется в нормированную ось , частота гарантированного затухания WS преобразуется в нормированную частоту , а частота среза WD - .

Находят частоту гарантированного затухания ФНЧ-прототипа: . По известным параметрам AD, AS, , учитывая вид выбранной аппроксимации, определяют операторную передаточную функцию КФНЧ(Р) ФНЧ-прототипа. После этого выполняют преобразование математической модели ФНЧ-прототипа в математическую модель ФВЧ.

Преобразование модели ФНЧ-прототипа в модели других фильтров выполняют трансформированием нулей и полюсов его передаточной функции Kz(p) реактансными или нереактансными преобразованиями. При этом реактансные преобразования используют для получения звеньев с характеристиками ФВЧ и частотно-симметричными характеристиками ПФ и ЗФ, нереактансные (например, преобразования Зданека) - в случае ПФ (ЗФ) с частотно-несимметричными характеристиками. В задачах моделирования в основном применяются реактансные преобразования, являющиеся наиболее простыми. Согласно им переход к ФВЧ соответствует замене в модели КФНЧ(Р) ФНЧ-прототипа переменной p на1/р. В процессе преобразования ФНЧ>ФВЧ, кроме численного изменения коэффициентов операторной передаточной функции, появляется дополнительно сомножитель в числителе (величина l зависит от порядка и вида аппроксимации частотной характеристики фильтра), определяющий полюс затухания ФВЧ на нулевой частоте. ХРЗ ФВЧ геометрически симметрична относительно нормированной частоты среза (?=1) с ХРЗ ФНЧ-прототипа.

Операция денормирования выполняется так же, как и при проектировании ФНЧ.

Проектирование ПФ по методу рабочих параметров. ХРЗ ПФ имеет пять областей (рисунок 2.3): I (V) - нижняя (верхняя) полоса задерживания (соответственно (0-w-S) и(w S - Ґ)); II (IV) - нижняя (верхняя) переходная область (соответственно (w-S - w-D) и (w D - w S)); III - полоса пропускания (w-D - w D). Здесь: w-S (w S) - нижняя (верхняя) граничная частота полосы задерживания; w-D (w D) - нижняя (верхняя) граничная частота полосы пропускания; AD - неравномерность ХРЗ в полосе пропускания; AS - гарантированное затухание в полосах задерживания. Характеристика считается заданной, если известны все приведенные параметры. Жирной линией показана ХРЗ идеального ПФ.

Рис. 2.3 - Общий вид характеристики рабочего затухания ПФ

На практике, исходя из конкретных требований к ХРЗ ПФ, граничные частоты полос пропускания и задерживания, как правило, задаются в арифметической симметрии относительно центральной частоты, реже ? произвольным образом. Известно также, что расчеты существенно упрощаются, если ХРЗ является геометрически симметричной: существует некоторая частота щ0 полосы пропускания, значение которой по отношению к частотам щ-D, щ D, щ-S, и щ S удовлетворяет условию геометрической симметрии. С учетом этого вначале выполняют операцию симметрирования исходной ХРЗ ПФ, для чего выбирают и фиксируют частоты , , . Из условия геометрической симметрии находят частоту . При этом должно выполняться условие . В противном случае требования по затуханию в нижней полосе задерживания не будут выполнены. Если это условие по каким-либо причинам не выполняется, необходимо выбрать в качестве фиксируемых частоты и найти из условия геометрической симметрии частоту . В любом случае в качестве обязательных фиксируемых частот должны быть граничные частоты полосы пропускания ПФ. В последующих расчетах будут участвовать частоты . Далее находят нормированную граничную частоту полосы задерживания ФНЧ-прототипа и коэффициент преобразования. Затем по параметрам AD, AS, и виду характеристики рабочего затухания из справочной литературы находят подходящую операторную передаточную функцию КФНЧ(Р).

Для перехода к ПФ необходимо в передаточной функции КФНЧ(Р) ФНЧ-прототипа переменную p заменить на a (p 1/p). В случае преобразования ФНЧ>ПФ, как и при преобразовании к ФВЧ, дополнительно в операторной передаточной функции появляется сомножитель в числителе (величина l зависит от порядка и вида аппроксимации частотной характеристики фильтра), определяющий полюс затухания ПФ на нулевой частоте. Кроме этого, преобразование повышает порядок фильтра в два раза. ХРЗ ПФ геометрически симметрична относительно нормированной центральной частоты (?=1), имеет две полосы задерживания и одну полосу пропускания. Ширина полосы пропускания зависит от параметра a преобразования. Операция денормирования выполняется затем так же, как и при проектировании ФНЧ.

В курсовой работе в качестве операторной передаточной функции ФНЧ-прототипа выступает дробно-рациональная функция с аппроксимацией Баттерворта или Чебышева вида

Для нечетного порядка ФНЧ-прототипа или для четного порядка ФНЧ-прототипа, где (нормирующий множитель). Порядок фильтра определяется наивысшей степенью полинома знаменателя функции . Для (2.1) и (2.2) полином G(p)=1, а полином Гурвица V(p) содержит один действительный корень (у фильтров нечетного порядка) и k пар комплексно-сопряженных корней . Все корни полинома Гурвица являются однократными полюсами функции .

Заданными являются для ФНЧ (ФВЧ) и и для ПФ. В таблице 2.1 приведены расчетные формулы перехода от реальных частот щ к нормированным частотам ? для ФНЧ, ФВЧ и ПФ.

Таблица 2.1 - формулы перехода к нормированным частотам фильтр Денормированные частоты и полосы Нормированные частоты и полосы

ФНЧ Частота среза >

Задерживания - >

ПП: 0… ; ПО: ; ПЗ: ; > ПП: 0… ; ПО: ; ПЗ: ;

ФВЧ Частота среза >

Задерживания - >

ПЗ: 0… ; ПО: ; ПП: ; ПЗ: 0… ; ПО: ; ПП: ;

ПФ Частота среза нижняя (н) и верхняя (в): и > >

Частота задерживания нижняя (н) и верхняя (в): и > >

Центральная частота = >

: 0… ; : ; ПП: ; : ; … ; : ; : 0… ; : ; ПП: ; : ; … ; : ;

При преобразовании модели ФНЧ-прототипа в модель ФВЧ осуществляется замена переменной p, входящей в выражения (2.1) и (2.2) для передаточной функции ФНЧ-прототипа, на p. Выполняя это и последующие преобразования, получают передаточную функцию для нормированного ФВЧ соответственно вида или где ; ; ;

;

(в выражении (2.3));

(в выражении (2.4)).

Формулы (2.3), (2.4) получены соответственно из формул (2.1), (2.2). Видно, что преобразование ФНЧ>ФВЧ порядок фильтра не изменяет.

Для перехода к модели ПФ необходимо в передаточной функции ФНЧ-прототипа (2.1), (2.2) переменную p заменить на . Осуществляя указанную замену и выполняя последующие преобразования, получают модель нормированного ПФ соответственно вида либо или где ;

при используется формула (2.5б), , ;

при используется формула (2.5а), , ;

(в выражениях (2.5а) и (2.5б));

(в выражении (2.6)).

Очевидно, преобразование ФНЧ>ПФ приводит к увеличению порядка ПФ по сравнению с порядком ФНЧ-прототипа в два раза.

После получения нормированной модели разрабатываемого фильтра ( , или ), последнюю необходимо денормировать. Операция денормирования соответствует замене в выражениях (2.1)?(2.4) переменной p на , где ? граничная частота полосы пропускания ФНЧ (ФВЧ), в выражениях (2.5а), (2.5б), (2.6) на , где - центральная частота полосы пропускания ПФ, полученная из условия геометрической симметрии характеристик фильтра. Осуществляя необходимые преобразования, получают денормированные модели фильтров вида или или либо или где , , ;

, , , .

Операция денормирования не добавляет новых коэффициентов, а лишь изменяет значения существующих в соответствии с денормирующей частотой, поэтому вид частотных и временных характеристик, построенных по нормированным и денормированным моделям, одинаков, изменится лишь масштаб по оси абсцисс. Именно денормированная передаточная функция разрабатываемого фильтра применяется при расчете его принципиальной схемы, представленной в виде последовательного соединения фильтровых звеньев невысоких порядков (второго и первого). При разбиении денормированной передаточной функции фильтра на сомножители первого и второго порядков масштабирующий (нормирующий) множитель( ) распределяется некоторым способом между этими сомножителями.

3. Виды аппроксимации частотных характеристик. аппроксимация с помощью полиномов Баттерворта и Бесселя

При моделировании реальных устройств фильтрации с помощью комплексной передаточной функции необходимо располагать описанием их АЧХ и ФЧХ. Под электрическим фильтром понимается устройство, пропускающее колебания одних частот и задерживающее колебания других частот. Область частот, пропускаемых электрическим фильтром, называется полосой пропускания. Область частот, задерживаемых (не пропускаемых) фильтром, называется полосой задерживания. Между полосой пропускания и полосой задерживания модуль комплексной передаточной функции не должен выходить за пределы заданной неравномерности и гарантированного затухания соответственно. В переходной области модуль изменяется от значения, допустимого в полосе пропускания, до значения, требуемого в полосе задерживания.

В общем случае требования к модулю либо к характеристике рабочего затухания (ХРЗ) на разных участках полосы задерживания могут быть различными. Помимо требований к этим характеристикам, в некоторых случаях дополнительно предъявляются требования к аргументу комплексной передаточной функции, т.е. к фазочастотной характеристике. Основными требованиями, определяющими непосредственное назначение фильтра, являются требования к его избирательности. Исходя из этих требований, решают первую часть общей задачи синтеза электрических фильтров - аппроксимацию.

Задача аппроксимации состоит в том, чтобы синтезировать некоторую функцию частоты, удовлетворяющую требованиям к АЧХ или ХРЗ разрабатываемого фильтра. Наиболее удобно функцию частоты представлять в виде ХРЗ

, (3.1) где - коэффициент, характеризующий степень постоянства (неравномерность) затухания (усиления) в полосе пропускания; - функция фильтрации, для которой желательны значения, близкие к нулю в полосе пропускания и как можно большие в полосе задерживания. Функция фильтрации в общем случае может быть дробной.

Известные в инженерной практике способы получения функции фильтрации и, следовательно, комплексной передаточной функции удобно классифицировать по критерию аппроксимации АЧХ: - равноволновое (равномерно колебательное) приближение в полосе пропускания и в полосе задерживания;

- равноволновое приближение в полосе пропускания;

- максимально плоское приближение в полосе пропускания.

В последних двух случаях затухание в полосе задерживания монотонно возрастает с удалением от граничной частоты. В качестве функции фильтрации может использоваться достаточно большое число разновидностей полиномов и дробей.

В теории фильтрации принято так называемое нормирование по частоте, приводящее расчет фильтров (ФНЧ, ФВЧ, ПФ, ЗФ), работающих на различных частотах, к расчету некоторого нормированного фильтра с определенной частотой среза. В качестве такого нормированного фильтра, называемого прототипом, принимается ФНЧ. При изображении характеристик ФНЧ-прототипа по оси абцисс откладывается нормированная частота , поэтому граничной частоте его полосы пропускания соответствует частота .

Аппроксимация с помощью полиномов Баттерворта. Широко используемым на практике способом аппроксимации идеализированной характеристики ФНЧ является нахождение ХРЗ с максимально плоским приближением. Функция фильтрации в этом случае представляется полиномами Баттерворта

. (3.2)

Учитывая последнее и выражение (3.1), приходим к модели ХРЗ фильтров Баттерворта в виде

. (3.3)

Если и , то , что соответствует половине мощности. На рисунке 3.1 приведены основные частотные и временные характеристики фильтров Баттерворта разных порядков (ХРЗ, АЧХ, ФЧХ, ХГВЗ, ИХ, ПХ).

ХРЗ (АЧХ) имеют монотонно нарастающий (спадающий) характер в полосе пропускания (вплоть до частоты среза ) и монотонный характер в переходной области и полосе задерживания. Степень приближения характеристик к идеализированным (П - образным) возрастает с увеличением порядка полинома Баттерворта (порядка фильтра). Характеристики на частоте имеют одинаковое (нулевое) затухание для четного и нечетного порядков (в отличие от фильтров Чебышева).ФЧХ с увеличением порядка фильтра все более отличается от линейной, увеличивается ее наклон. ХГВЗ, в отличие от фильтров Чебышева, монотонно возрастает с приближением у частоте среза (тем больше, чем выше порядок фильтра), что обусловлено монотонным поведением ХРЗ (АЧХ) в полосе пропускания.

Анализ переходных и импульсных характеристик фильтров Баттерворта показывает, что с увеличением порядка фильтра увеличиваются длительность переходного процесса, амплитуда колебаний (включая и амплитуду первого выброса), уменьшается размах основного лепестка импульсной характеристики при одновременном увеличении длительности по уровню 0,5. Эти изменения, в сравнении с характеристиками фильтров Чебышева, существенно меньше.

Фильтры-прототипы Чебышева и Баттерворта называют еще полиноминальными, поскольку их операторные передаточные функции представляются в виде

, (3.4) где полином числителя, равный единице, не зависит от частоты.

Коэффициенты полинома знаменателя однозначно связаны с функциями фильтрации при аппроксимации полиномами Баттерворта и Чебышева. С целью упрощения реализации фильтров на практике используют каскадное соединение отдельных звеньев второго и первого порядков. В этом случае полином знаменателя

ХРЗ АЧХ

ФЧХ ХГВЗ

ПХ ИХ

Рисунок 3.1 - Частотные и временные характеристики фильтров разных порядков с аппроксимацией по Баттерворту раскладывают на множители и группируют его корни таким образом, чтобы они были либо комплексно сопряженными с отрицательной вещественной частью (для звеньев второго порядка), либо вещественными отрицательными (для звеньев первого порядка). Тогда операторная передаточная (3.4) фильтра-прототипа представится в виде (2.1) или (2.2), где коэффициенты и однозначно связаны с коэффициентами знаменателя выражения функции (3.4). Поскольку математические модели фильтров Баттерворта и Чебышева отличаются только своими коэффициентами, то их реализация возможна с помощью одних и тех же принципиальных схем, отличающихся только номиналами элементов.

Характеристики рабочего затухания фильтров Баттерворта и Чебышева в переходной области и полосе задерживания не имеют никаких особенностей, за исключением того, что затухание резко возрастает. Существуют аппроксимации идеальных характеристик ФНЧ, при которых функция затухания в полосе пропускания ведет себя также, как и в случаях аппроксимации полиномами Баттерворта (максимально плоская) и Чебышева (равноволновая), однако в полосе задерживания является изоэкстремальной: имеет полюсы ХРЗ (нули АЧХ). К таким фильтрам относят фильтры Золотарева-Крауэра и обращенные (инверсные) фильтры Чебышева.

Аппроксимация с помощью полиномов Бесселя. При этом виде аппроксимации минимизируются временные задержки сигнала. Функция фильтрации представляется полиномами Бесселя n-го порядка вида

, (3.5) где - постоянная нормирования, , . Последняя может быть представлена двумя формами записи

(3.6) или , (3.7) где ; .

Асимптотическая частота среза может быть определена на уровне Ѕ как . На рисунке 3.2 приведены основные частотные и временные характеристики фильтров Бесселя разных порядков (ХРЗ, АЧХ, ФЧХ, ХГВЗ, ИХ, ПХ)

Фильтр Бесселя характеризуется максимально гладкой ХГВЗ, переходная характеристика имеет весьма малый выброс (менее 1%), импульсная характеристика и АЧХ стремятся к гауссовой прямой при увеличении порядка фильтра.

ХРЗ АЧХ

ФЧХ ХГВЗ

ПХ ИХ

Рисунок 3.2 - Частотные и временные характеристики фильтров разных порядков с аппроксимацией по Бесселю

4. Вывод передаточных функций фильтровых звеньев по структуре рауха

Самым распространенным методом расчета активных фильтров по умеренным требованиям является каскадное соединение фильтров второго порядка (в случае нечетного порядка фильтра к каскадам второго порядка добавляется каскад первого порядка). Преимущество каскадного проектирования состоит в простоте расчетов, подгонки элементов и настройки фильтров, а также минимальной мощности, поскольку число операционных усилителей на звене фильтра второго порядка может изменяться в соответствии с заданными параметрами на фильтр. Так малоизбирательный фильтр (с низкой добротностью полюсов) может строиться на одном операционном усилителе, а для обеспечения стабильной работы звена с более высокой добротностью используется звено на двух усилителях.

Среди структур фильтровых звеньев второго порядка (на одном или нескольких усилителях) известны следующие: Саллена-Ки, Рауха (с многопетлевой обратной связью), Тоу-Томаса, Флейшера-Тоу, Кервина-Хьюлсмана-Ньюкомба, Аккерберга-Мосберга, звено с гиратором на операционном усилителе и другие. Выбор конкретной структуры для проектирования фильтра зависит от требований по минимальной мощности, простоте настройки, методу изготовления, допускам на параметры и характеристики.

Большинство схем фильтров принадлежит к семейству конечных линейных цепей с сосредоточенными параметрами, для описания которых используется операторная передаточная функция

(4.1)

или операторная функция затухания

(4.2) где и - лапласовские изображения воздействия и реакции рассматриваемого звена. Предполагается, что активный фильтр возбуждается от источника напряжения, а выходной сигнал снимается с выходного контакта операционного усилителя, при этом полное сопротивление источника сигнала равно нулю, а сопротивление нагрузки бесконечно.

При разработке схемной реализации фильтра используется полученная ранее денормированная операторная передаточная функция разрабатываемого устройства фильтрации - , или , которая представляется в виде произведения операторных функций второго и первого (при необходимости) порядков. Последние соответствуют рассматриваемым фильтровым звеньям требуемого типа по структуре Рауха и Салена-Кея для схем второго порядка и структуре инвертирующего и неинвертирующего звена первого порядка. Причем, при разбиении денормированной передаточной функции фильтра на сомножители первого и второго порядков масштабирующий (нормирующий) множитель ( ) распределяется некоторым способом между этими сомножителями.

Структура фильтрового звена второго порядка с многопетлевой обратной связью (Рауха) представлена на рисунке 4.1.

Рисунок 4.1 - Структура Рауха для фильтрового звена второго порядка

Считая, что операционный усилитель идеален (т.е. ток не потребляет), потенциал узла О равен 0, а потенциал узла А обозначим . По первому закону Кирхгофа запишем

(4.3)

Выражая токи по закону Ома через потенциалы и проводимости и учитывая второе уравнение из (4.3), получаем . Тогда первое уравнение из (4.3) преобразуется к виду

. (4.4)

Из выражения (4.4) рассчитывается передаточная функция цепи

. (4.5)

Сравним (4.5) с операторной передаточной функцией фильтрового звена верхних частот второго порядка с аппроксимацией частотных характеристик Чебышева или Баттерворта

. (4.6)

Видно, что в числителе и знаменателе (4.6) стоят полиномы второго порядка, поэтому (рисунок 4.2).

Рисунок 4.2 - Фильтровое звено верхних частот второго порядка по структуре Рауха с аппроксимацией Чебышева или Баттерворта

Запишем (4.5) с учетом указанных проводимостей (рисунок 4.3б)

(4.7) которую преобразуем к виду (4.6)

(4.8)

Сравнивая (4.6) и (4.8), имеем систему уравнений для расчета номиналов схемы

(4.9)

Полученная система трех уравнений содержит пять неизвестных . Тогда решение системы (4.9) представляется в виде

(4.10)

5. Моделирование фильтра на функциональном уровне в системе mathcad в частотной и временной областях (расчет АЧХ, ФЧХ, ХРЗ, ХГВЗ, ИХ, ПХ в нормированном и денормированном видах)

Для моделирования на функциональном уровне будем использовать MATHCAD.

Операторную передаточную функцию можно записать в следующем виде: (5.1) где K(w) - амплитудно-частотная характеристика;

?(w) - фазо-частотная характеристика.

Амплитудно-частотная характеристика определяется следующим образом: (5.2)

Фазо-частотная характеристика определяется следующим образом: (5.3)

Построим АЧХ и ФЧХ в MATHCAD: Исходные данные:

Построим АЧХ фильтра прототипа нижних частот:

Рисунок 5.1 - АЧХ фильтра прототипа нижних частот в нормированном виде

Для построения характеристик ФВЧ, осуществим пересчет параметров по методике описанной во втором разделе.

где ; ;

Построим АЧХ ФВЧ.

Рисунок 5.2 - АЧХ ФВЧ в нормированном виде

Построим ФЧХ ВФЧ

Рисунок 5.3 - ФЧХ ФВЧ в нормированном виде

Построим характеристику рабочего затухания.

Рисунок 5.4 - ХРЗ ФВЧ в нормированном виде

Построим характеристику группового времени запаздывания

Рисунок 5.5 - ХГВЗ ФВЧ в нормированном виде

Построим импульсную и переходную характеристики

Рисунок 5.6 - ИХ ФВЧ в нормированном виде

Рисунок 5.7 - ПХ ФВЧ в нормированном виде

Чтобы построить данные характеристики фильтра в денормированном виде, необходимо получить параметры ФВЧ в денормированном виде. Для этого воспользуемся следующими выражениями:

Построим АЧХ ФВЧ.

Рисунок 5.2 - АЧХ ФВЧ в денормированном виде

Построим ФЧХ ВФЧ

Рисунок 5.3 - ФЧХ ФВЧ в денормированном виде

Построим характеристику рабочего затухания.

Рисунок 5.4 - ХРЗ ФВЧ в денормированном виде

Построим характеристику группового времени запаздывания

Рисунок 5.5 - ХГВЗ ФВЧ в денормированном виде

Построим импульсную и переходную характеристики

Рисунок 5.6 - ИХ ФВЧ в денормированном виде

Рисунок 5.7 - ПХ ФВЧ в денормированном виде

Анализ результатов вычислений показывает, что операция денормирования произведена верно, так как характеристики фильтра в денормированном виде отличны от характеристик в нормированном виде представляемой областью частот.

6. Разработка принципиальной схемы фильтра и расчет элементов

По условию нам задан ФВЧ восьмого порядка, принципиальная схема в данном случае состоит из последовательно соединенных четырех структур Рауха второго порядка.

Следовательно, представим следующим образом: (6.1) где - коэффициент для структуры Рауха второго порядка.

Рассчитаем фильтровое звено второго порядка.

Рисунок 6.1 - Структура фильтрового звена второго порядка

Перепишем выражение (4.5) с конкретными выражениями проводимостей, имеем: (6.2)

Получим систему:

(6.3)

Система (6.3) для одного каскада представляет собой три уравнения с пятью неизвестными, то есть с двумя степенями свободы. Для ее решения зададим два номинала Значения коэффициентов , были высчитаны ранее. Подставим номиналы в систему уравнений и рассчитаем значение .

Аналогично рассчитаем номиналы элементов второго, третьего и четвертого каскадов.

Занесем результат в таблицу.

Таблица 6.1 - Номиналы элементов в схеме фильтра

№ звена I II III IV

0.01 мкф 0.01 мкф 0.01 мкф 0.01 мкф

0.01 мкф 0.01 мкф 0.01 мкф 0.01 мкф

925.5 Ом 2.6356 КОМ 3.9445 КОМ 4.6528 КОМ

54.7 КОМ 19.2 КОМ 12.8 КОМ 10.9 КОМ

7. Моделирование фильтра на схемотехническом уровне в системе electronic workbench в частотной и временной областях (измерение АЧХ, ФЧХ, ЧРЗ, ИХ, ПХ)

Программа «Electronic Workbench» предназначена для синтеза и анализа дискретных и аналоговых схем на основе стандартных компонентов, входящих в базовый набор программы, используются также при применении созданных пользователем блоков.

Соберем в «Electronic Workbench» принципиальную схему, определенную приложением А. Зададим в схеме рассчитанные в разделе 6 номиналы элементов.

К схеме подключим функциональный генератор, осциллограф и измеритель частотных характеристик. Принципиальная схема, позволяющая осуществить измерение частотных характеристик, изображена на рисунке 7.1. В функциональном генераторе зададим периодическую последовательность видеоимпульсов частотой следования 125 Гц и амплитудой 100 МВ.

Рисунок 7.1 - Схема электрическая принципиальная ФВЧ

С помощью измерителя частотных характеристик измерим АЧХ и ФЧХ.

Рисунок 7.2 - АЧХ ФВЧ

Для измерения импульсной характеристики ввиду невозможности физического моделирования идеального импульсного воздействия зададим скважность входной последовательности видеоимпульсов, равную 1%.

Измеренные характеристики схожи с характеристиками, построенными в разделе 5. Следовательно, можно сделать вывод о корректном проектировании устройства фильтрации на функциональном и схемотехническом уровнях.

Вывод
В данной курсовой работе спроектирован высокочастотный фильтр восьмого порядка с аппроксимацией Баттерворта. В качестве схемной реализации использованы четыре звенья структуры Рауха. Данный фильтр обладает хорошей стабильностью характеристик и низким выходным полным сопротивлением, однако невозможно достичь высокого значения добротности Q без значительного разброса значений элементов и высокой чувствительности к их изменению. Таким образом, его можно сразу соединять каскадно с другими звеньями для реализации фильтра более высокого порядка.

В данной курсовой работе было рассмотрено моделирование фильтра на функциональном уровне и были определены его характеристики во временной и частотной областях, которые соответствуют теоретическим сведеньям о фильтрах. В результате моделирования на схемотехническом уровне были сняты рассчитанные характеристики с помощью измерительных приборов и отмечено их соответствие техническим требования. Кроме того была возможность убедится в правильности вывода операторной функции и расчете электрических элементов.

Список литературы
1. 1. Зааль Р. «Справочник по расчету фильтров». Перевод с немецкого Ю.В. Камкина под редакцией Н.Н. Слепова. Москва «Радио и связь» 1983 г. - 752 с.

2. Г. Мошиц, П. Хорн. «Проектирование активных фильтров». Перевод с английского М.Н. Микшиса и И.Н. Теплюкова. Москва «Мир» 1984 г.

3. Д. Джонсон, Дж. Джонсон, Г. Мур. «Справочник по активным фильтрам». Перевод с английского М.Н. Миншисо. Под редакцией И.П. Теплюкова. Москва Энергоатомиздат 1983 г.

4. Г. Ханзел. «Справочник по расчету фильтров». Перевод с английского В.А. Старостина. Под редакцией А.Е. Знаменского. Москва «Советское радио» 1974 г.

5. Интернет ресурсы.

Размещено на
Заказать написание новой работы



Дисциплины научных работ



Хотите, перезвоним вам?