Расчет структурной схемы усилителя. Определение числа каскадов. Распределение искажений по каскадам. Расчет оконечного каскада. Выбор транзистора. Расчет предварительных каскадов. Расчет усилителя в области нижних частот (больших времен).
Аннотация к работе
Данное методическое пособие посвящено вопросам курсового проектирования усилительных устройств (УУ) как одного из классов аналоговых электронных устройств (АЭУ). Проектирование УУ - многофакторный процесс, во многом зависящий от интуиции, знаний и опыта разработчика. Эти трудности усугубляются еще и тем, что учебная литература по курсовому проектированию УУ в значительной степени устарела, содержит много спорных моментов и взаимоисключающих выводов. В данной разработке делается главный упор на рассмотрение непосредственных вопросов эскизного проектирования УУ, полагая, что необходимые теоретические сведения и практические навыки получены студентами на лекционных, практических и лабораторных занятиях.При проектировании УУ решают ряд задач, связанных с составлением схемы, наилучшим образом удовлетворяющей поставленным требованиям технического задания (ТЗ), с расчетом этой схемы на основании выбранных параметров и режимов работы ее элементов. В данном пособии даются рекомендации по эскизному расчету широкополосных усилителей (ШУ) с порядка десятков мегагерц и импульсных усилителей (ИУ) с временем установления фронта импульса порядка десятков наносекунд, работающих в низкоомных согласованных трактах передачи и выполненных на биполярных транзисторах. Режим согласования обычно предусматривает равенство внутреннего сопротивления источника сигнала, входного и выходного сопротивления УУ, сопротивления нагрузки волновому сопротивлению тракта передачи сигнала. В ТЗ на расчет ШУ обычно задают коэффициент усиления по напряжению K, верхнюю и нижнюю граничные частоты и при заданных коэффициентах частотных искажений и , уровень нелинейных искажений, требования к стабильности характеристик в диапазоне температур и т.д.(3.1) где K - коэффициент усиления усилителя, ДБ; С учетом коэффициента передачи входной цепи коэффициент усиления определится как: , где Е - э.д.с. источника сигнала; Для ШУ диапазона ВЧ и ИУ с временем порядка десятков наносекунд ориентировочно число каскадов можно определить, полагая в (3.1) все каскады одинаковыми с К =20 ДБ, т.е.Для многокаскадного ШУ результирующий коэффициент частотных искажений в области верхних частот (ВЧ) определяется следующим образом: , (3.2) где М-результирующий коэффициент частотных искажений в области ВЧ, ДБ; Частотные искажения УУ в области нижних частот (НЧ) определяются следующим соотношением: , (3.3) где М - результирующий коэффициент частотных искажений в области НЧ, ДБ; М - искажения, приходящиеся на i-й элемент, ДБ; Количество элементов, вносящих искажения на НЧ (обычно это блокировочные в цепях эмиттеров и разделительные межкаскадные конденсаторы), становится известным после окончательного выбора топологии электрической схемы УУ, поэтому распределение искажений в области НЧ проводят на этапе расчета номиналов этих элементов. Из (3.3) следует, что при равномерном распределении низкочастотных искажений, их доля (в децибелах) на каждый из N элементов определится из соотношения: На практике, с целью выравнивания номиналов конденсаторов, на разделительные конденсаторы распределяют больше искажений, чем на блокировочные.Выбор транзистора для оконечного каскада осуществляется с учетом следующих предельных параметров: ? граничной частоты усиления транзистора по току в схеме с ОЭ для ШУ, для ИУ; Если ИУ предназначен для усиления импульсного сигнала различной полярности (типа “меандра”) либо сигналов с малой скважностью (меньше 10), то при выборе транзистора оконечного каскада следует ориентироваться на соотношения для ШУ.Существуют графические методы расчета оконечного каскада, основанные на построении динамических характеристик (ДХ) [1,2]. Однако для построения ДХ необходимы статические характеристики транзисторов, которые в современных справочниках по транзисторам практически не приводятся. Рассмотрим методику нахождения координат рабочей точки транзистора без использования его статических характеристик. Задаемся сопротивлением в цепи коллектора: R =(1...2) R , если требуется согласование выхода УУ с нагрузкой, R =(2...3)R - в остальных случаях (рекомендация только для низкоомной нагрузки, R =(50...150)Ом). Определяем требуемое значение тока покоя коллектора в рабочей точке (плюс 10%-й запас с учетом возможной его термонестабильности) для ШУ и ИУ сигналов различной полярности (рис.4.2,а): .При использовании транзисторов до (0,2...0,3) возможно использование упрощенных эквивалентных моделей транзисторов, параметры элементов эквивалентных схем которых легко определяются на основе справочных данных, приведенных, например, в [3]. Эквивалентная схема биполярного транзистора приведена на рис.4.3. Параметры элементов определяются на основе справочных данных следующим образом: ? , где - постоянная времени цепи внутренней обратной связи в транзисторе на ВЧ;Определим потенциал в точке а : , где - напряжение база-эмиттер в рабочей точке, =(0,6...0,9)В (для кремниевых транзисторов). Определим приращение тока коллектора, вызванного тепловым смещением проходных характеристик: , где - прираще
План
Содержание
1Введение………………………………………………………..……………….3
2 Задачи курсового проектирования…………………………..………………..3