Характеристика руд месторождения "Кокпатас". Выбор оборудования и технологической схемы измельчения. Особенности переработки руд месторождения. Эксплуатация мельниц и измельчительного оборудования. Экономика производства, организация труда и управление.
Аннотация к работе
Кроме золота можно будет извлекать серебро, и другие элементы, а также получать серную кислоту из собственной серы. Золото один из уникальных химических элементов, обладающий рядом физико-химических свойств. Если в золоте имеются примеси окислов железа или оно покрыто ими, то цвет его изменяется от грязно-бурого до темно-коричневого. В водных растворах с хлором образуется хлорное золото AUCL3, которое при температуре 180С распадается на AUCL и Cl2 (хлористое золото), а при температуре выше 220С на золото и хлор. Сплавы золота с платиной представляют собой твердые растворы до 25% - платина в золоте и более 80% - золота в платине.В последние годы, на обогащение поступает все больше сложных руд. В ряде случаев, до определения технологической схемы переработки той или иной руды, проводят оценку различных схем на укрупненных полупромышленных установках. Полученные при этом данные ложатся в основу промышленной схемы обогащения. Выбор технологической схемы производят в зависимости от крупности начального и конечного продуктов измельчения, производительности обогатительной фабрики, необходимости раздельной обработки песков и шламов, необходимости стадиального обогащения, физических свойств руды. Одностадиальные схемы измельчения применяются без контрольной классификации слива при сравнительно небольшой степени измельчения, или же при малой производительности обогатительной фабрики.Из мельниц со стальными дробящими телами, на обогатительных фабриках применяются: стержневые, шаровые с разгрузкой через решетку, шаровые с центральной разгрузкой. По сравнению с шаровыми, стержневые мельницы дают более высокую производительность при измельчении до 1-3 мм, но они не могут эффективно работать когда требуется получить более мелкий продукт. Из шаровых мельниц наиболее распространены мельницы с разгрузкой через решетку. Они более производительны и выдают измельченный продукт с меньшим содержанием шламов, чем мельницы с центральной разгрузкой. Мельницы с центральной разгрузкой должны устанавливаться в тех случаях, когда переизмельчение является полезным фактором, при последующей переработки руды, например, при цианировании золотых руд, с тонкодисперсной и коллоидальной вкрапленностью золота.На современных обогатительных фабриках, коэффициент использования оборудования достигает 93-95%, что является результатом правильной технической эксплуатации оборудования, своевременного и качественного проведения ремонтных работ. Мельница включается в работу только после пуска централизованной системы жидкой и густой смазки. При работе мельниц, машинист должен следить за состоянием привода, не допуская его пульсаций и ударов.Исходя из годовой производительности, определяем среднечасовую производительность отделения измельчения: Q1 = Qг / 365 ? 24 ? КИО = 5 000 000/365 ? 24 ? 0,82 = 696 т/час. Используя зависимость между питанием и выходом классификаторов находим нагрузки на классификаторы первой и второй стадии: Q5 = Q8 ? (?8 - ?5) / (?5 - ?7) = 232 ? (78 - 24,4) / (24,4 - 4,5) = 601,6 т/час Главной характеристикой эффективности работы мельниц является их удельная производительность, которая определяется по формуле: q (мельницы) = Qm ? (?в - ?n) / Vm, т/м3?час где Qm - производительность мельницы; Производительность барабанных мельниц зависит от крупности исходного и конечного продуктов, измельчаемости руды, размера, типа и частоты вращения мельницы, разжижении пульпы в питании, величины циркулирующей нагрузки, эффективности работы классифицирующих устройств. Количество руды прошедшее через мельницу в единицу времени, определяет ее производительность по исходному питанию и может быть рассчитана по формуле: Q=P/tВ данном дипломном проекте вопросы организации труда и управления находят отражение в определении штатов работников цеха измельчения, расчетов заработной платы и организации управления. Для выполнения функций управления производством в цехе создается управляющая система - аппарат управления. Под функциями управления понимаются отрасль работы, представляющая совокупность решений и действий, процессов, объединенных общностью выполняемых задач. Система управления производством подразделяется на несколько различных уровней управления по возрастающей. Такое управление позволяет четко определить функции каждого управленческого звена.Фонд заработной платы промышленно-производственного персонала определяется на основе рассчитанной численности действующих тарифных ставок и систем заработной платы. Списочная численность и эффективный фонд времени принимается на основании выполненных раннее расчетов. Статья расходов Объем Стоимость, Тыс. сум Стоимость сантехн. обор. В последнем прибытии на склад, стоимость материалов составляла: Шары 1т - 224110 сум До этого, стоимость этих материалов была следующая: Шары 1т - 210115 сумВ данной работе кратко рассматривается развитие цветной промышленности Узбекистана, причины и следствия этого развития. Дана полная характеристика физико-химическим свойствам золота и генезис образования месторождений золотосод
План
Содержание
1. Общая часть
Введение
1. Характеристика минерального сырья
2. Характеристика руд месторождения "Кокпатас"
2. Специальная часть
1. Выбор технологической схемы измельчения
2. Выбор технологического оборудования
3. Особенности переработки руд месторождения "Кокпатас"
4. Эксплуатация мельниц и другого измельчительного оборудования
3. Расчет технологической схемы
4. Экономика производства
1. Организация труда и управления
2. Расчет фонда заработной платы
Заключение
Литература
1. Общая часть
Введение
Развитие промышленности Узбекистана с каждым годом требует расширения сырьевой базы. Добыча руд увеличивается и вместе с тем изменяется качество добываемых полезных ископаемых. В первую очередь уменьшается в них содержание полезного компонента. В связи с этим изменяется технология переработки и обогащения руд.
Непрерывное совершенствование технологии переработки минерального сырья, применение более прогрессивных методов и приемов, выбор оптимальных схем обогащения позволяют экономически обоснованно выделить из раннее бесперспективных и бедных руд, рентабельные к отработке.
С другой стороны, комплексное использование полезных ископаемых, ставит в ряд экономически выгодных, добычу и переработку раннее отбракованных по кондициям месторождений и рудопроявлений. Это значительно расширяет сырьевую базу Узбекистана.
Узбекистан - одно из ведущих государств в мире, по добыче и выпуску золота. Перерабатываемые в настоящее время золотосодержащие руды, характеризуются большим разнообразием типов месторождений и руд. Каждый тип руд требует своего подхода к его переработке. Появляются новые технологии обогащения. Внедряются безотходные и малоотходные технологические процессы, обеспечивающие комплексное получение полезных компонентов. Избегаются непредвиденные потери металла, уменьшение расхода реактивов, воды, воздуха и других материальных затрат.
Рудоперерабатывающий комплекс СЕВРУ входит в состав Навоийского Горно-Металлургического Комбината. Комплекс состоит из золоторудного разреза Кокпатас и гидрометаллургического комплекса ГМЗ-3.
Первая очередь ГМЗ-3 построена из учета переработки окисленных руд месторождения "Кокпатас", которые составляют порядка 30% от всего запаса месторождения. С завершением строительства ряда цехов и реконструкции гидрометаллургического оборудования, завод будет перерабатывать сульфидные золотосодержащие руды месторождения "Кокпатас", которые составляют порядка 70% от всего запаса месторождения. Кроме золота можно будет извлекать серебро, и другие элементы, а также получать серную кислоту из собственной серы.
Физико-химические свойства золота.
Золото один из уникальных химических элементов, обладающий рядом физико-химических свойств. Оно отличается высокой стойкостью к коррозии и к агрессивным средам. По электро- и теплопроводности золото уступает лишь серебру и меди.
Химически чистое золото имеет ярко-желтый цвет с сильным металлическим блеском. Цвет золота зависит от наличия различных примесей в нем, и от агрегатного состояния. Тонкая золотая пластинка имеет зеленый цвет, который сохраняется и в расплаве. Тонкодисперсное золото может иметь цвет от пурпурного, до синевато-серого и даже черное. Если в золоте имеются примеси окислов железа или оно покрыто ими, то цвет его изменяется от грязно-бурого до темно-коричневого.
Золото - очень мягкий металл. Чистое золото имеет твердость 2,5 по десятибалльной шкале, что сравнимо с кальцитом. Оно очень легко истирается, превращаясь в тончайшую пыль.
Золото имеет хорошую ковкость и тягучесть. Его можно расковать в пластинку толщиной 1 мкм.1 грамм золота можно растянуть в нить длиной 300 м, а 1 кг золотой фольги покрывает поверхность в 530 м2.
Плотность чистого золота - 19,32 г/см3, то так как в чистом виде в природе оно не встречается, а любые примеси изменяют его плотность, она составляет 15 - 19 г/см3.
Золото - хороший проводник тепла и электричества. Температура его плавления - 1063С, а кипения - 2677С.
Золото обладает большой летучестью, которая возрастает по мере повышения его температуры. При этом существенную роль играет кроме его собственной температуры, состав окружающей атмосферы, от наличия примесей, которые понижают поверхностное натяжение расплава.
Золото образует соединения, в которых оно проявляет переменную валентность, равную 1 или 3. Последнее более устойчиво и часто встречаемо.
С кислородом золото не взаимодействует даже при больших температурах. На него не действуют кислоты и щелочи. В некоторых жидкостях золото может растворяться, например, в воде, содержащей хлор, серную кислоту, гумусовые кислоты. Золото также хорошо растворяется в цианидах, в растворах тиокарбомида и в царской водке (смеси азотной и соляной кислот в пропорции (1: 3).
Из других элементов золото хорошо соединяется с хлором, бромом, йодом, мышьяком и фосфором. В водных растворах с хлором образуется хлорное золото AUCL3, которое при температуре 180С распадается на AUCL и Cl2 (хлористое золото), а при температуре выше 220С на золото и хлор.
Способность золота растворяться в присутствии кислорода в растворах цианидов, с образованием двойных комплексных солей, используется при извлечении золота из руд методом цианирования.
В природе также известны соединения золота с теллуром и ртутью.
Минералы и соединения золота: калаверит, электрум, медистое золото, порпецид, платинистое, иридистое и родистое золото.
Сплавление золота с другими металлами изменяет его свойства. Например, оно становится твердым с медью и хрупким со свинцом.
Дробность атомной массы природного золота (196,96) говорит о том, что оно состоит из смеси различных по массе изотопов. Всего известно 15 изотопов золота с атомной массой от 183 до 201.
Золото кристаллизуется в кубический сингоид. Структура: координационная решетка гранецентрированная, по углам и в центре граней куба расположены атомы золота, так что получается очень плотная упаковка. Связь между атомами - металлическая. Магнитность - золото диамагнитно (имеет отрицательную восприимчивость).
Излом крючковатый. Черта желтая, блестящяя до оранжево-красного.
Золото образует сплавы со многими металлами. При высокой температуре оно хорошо извлекается сульфидами свинца и меди и переходит вместе с ними в состав заводских штейнов.
Сплавы золота со ртутью называют амальгамами, и представляют собой твердо-жидкие смеси. Ртуть образует с золотом три состояния - AUHG2 - (фаза б), Au2Hg (фаза ?), Au3Hg (фаза ?) и твердый раствор с концентрацией ртути 18,7% (фаза ?).
Сплавы золота с платиной представляют собой твердые растворы до 25% - платина в золоте и более 80% - золота в платине.
Сплавы золото-палладий образуют непрерывный ряд твердых растворов.
В ничтожно малых количествах золото присутствует в горных породах и морских водах. Так, граниты американского штата Невада, содержат 1,1 г/т золота, а диабазы - 0,76 г/т.
Чаще всего, золото концентрируется в кварцевых жилах. Именно такими жилами и представлены большинство месторождений.
В тонне морской воды содержится примерно 5 - 10 мг золота, которые неравномерно распределены по отдельным морям. Так, в Карибском море содержание золота достигает 15 - 18 мг/т. В районе берегов Австралии - до 65 мг/т. Золото попадает в моря и океаны благодаря впадающим рекам, которые несут массу золотосодержащих минералов. Достаточно сказать, что река Амур выносит в океан до 8 т золота ежегодно.
Первичные (коренные) месторождения золота образовались в результате кристаллизации магмы. Первой застывает силикатная часть магмы, которая при дифференциации располагается в верхней части. Сульфидные, хлоридные и карбонатные рудные части магмы тяжелее и более легкоплавки, поэтому дольше остаются в расплаве и находятся в нижней части магмы. Они поднимаются и застывают в трещинах уже образованной породы из силикатной магмы. Вместе с сульфидами, хлоридами и карбонатами металлов поднимается золото и серебро. Последней по трещинам поднимается остаточная магма в виде гидротермальных растворов. Они несут в себе жильные породообразующие минералы, такие как кальцит, доломит, барит, хлорит, вместе с рудными минералами и соединениями мышьяка, сурьмы, фтора, хлора, углекислоты с оловом и медью, свинцом и цинком, золотом.
На основании вышесказанного этапные золоторудные месторождения имеют следующие типы: магматогенные. Здесь золото извлекается попутно из медно-никелевых и сульфидных руд;
гидротермальные высокотемпературные золотоарсенопиритовые с пиритом, кварцем, турмалином. Рудные тела - жилы и окварцованные и пиритизированные зоны;
гидротермальные среднетемпературные золото-кварцевые, золото-колчеданные и золотобаритовые образования, в которых золото располагается в сульфидах и между зернами кварца;
гидротермальные низкотемпературные. Они представлены жилами и штокверками, приуроченные к эффузивным образованиям;
экзогенные - зоны окисления. В зоне окисления верхние приповерхностные зоны подвергаются химическому выветриванию. Железосодержащие минералы в породе - сульфиды, арсениды, пириты, арсенопириты, диарсениды железа, никеля, кобальта, которые окисляются кислородом, проникающим в породу с водой (дожди, грунтовые и подземные воды). Железо из двухвалентного переходит в трехвалентную форму, образуя новые минералы типа гетита, гидрогетита, лимонита. Вместе с окислением железа из сульфидов и других минералов высвобождается золото, которое укрупняется и скапливается среди вторичных металлов. экзогенные - россыпные месторождения. Они образуются в результате разрушения коренных золоторудных месторождений. Такие россыпи имеют несколько типов образования: элювиальные, образованные на месте разрушения породы (кора выветривания). Далее золото переносится по склону к подножию и дальше сносится в озера, моря, реками отлагаясь в руслах рек и в волноприбойных и устьевых частях. По мере переноса скопления золота будут определяться как делювиальными, пролювиальными, аллювиальными. Россыпные месторождения располагаются близко к поверхности и поэтому они более доступны к освоению. К тому же при обогащении исключаются дорогостоящие операции дробления и измельчения. Вместе с тем золото из россыпей более чистое, чем рудное, так как в процессе переноса оно очищается от примесей и других пород. метаморфогенные месторождения представлены золотоносными конгломератами. Происхождение этих образований точно не установлено, хотя в мировой добыче золота их доля составляет до 40% благородного металла.
2. Характеристика руд месторождения "Кокпатас"
Одним из крупнейших золоторудных месторождений Узбекистана является "Кокпатас".
Это месторождение расположено в пределах Кызылкумских палеозойских поднятий (горы Букантау) и приурочено к отложениям Кокпатасской брахиантиклинали. Комплекс пород представлен дислоцированными и метаморфизированными вулканично-осадочными образованиями палеозоя и слабометаморфизированными песчаниками и глинисто-алевритовыми отложениями мезозойского чехла.
Рудные залежи локализуются в линейных зонах кварц-сирицит-карбонатных метасоматитах. Основные запасы сосредоточены в крупных залежах, имеющих пластообразную форму с раздувами и пережимами.
Все рудные тела с поверхности до глубины 10 - 40 м окислены. Окисление проникло по проницаемым разностям пород, каковыми являются тонкозернистые и мелкозернистые глинисто-слюдистые песчаники и в меньшей степени алевропилиты.
Характерными минералами зоны окисления являются гетит, гидрогетит, ярозит, скородит, каолинит, которые определяют окраску окисленных пород от желтовато-серой до темно-бурой, с красными и коричневыми оттенками.
По мере окисления вмещающих и рудных минералов происходило высвобождение золота и сульфидов, укрупнение зерен до 30 - 40 мкм в диаметре и перенос в нижние части проницаемых линз и пластов. Форма золотых зерен обычно изометричная и реже удлиненная.
Подготовка минерального сырья.
Добытая руда имеет, как правило, очень низкое содержание полезного компонента, и поэтому ее непосредственная металлургическая обработка экономически невыгодна. Часто, содержащиеся в руде компоненты не только бесполезны, но и вредны. В золотосодержащих рудах месторождения "Кокпатас" такими компонентами являются сера и мышьяк. Вредные примеси должны быть максимально удалены из руды до металлургической обработки.
Массу пустой породы необходимо удалять перед обогащением. Если руда содержит только полезные минералы, то она разнообразна по крупности. Такое сырье также непригодно для металлургической переработки.
Поэтому перед обогащением необходима определенная подготовка руды, которая заключается в дроблении и измельчении (уменьшении крупности кусков руды до размеров, определяемых крупностью полезных компонентов). Необходимо также проделать операции разделения руды по крупности (грохочение и классификация).
Измельчение является заключительной операцией в цикле подготовки руды к обогащению. Процесс измельчения производится в аппаратах, называемых мельницами.
В результате измельчения необходимо получить продукт, пригодный по крупности к обогащению и содержащий полезные минералы в виде частиц, максимально освобожденных от пустой породы. В данном случае крупность измельчения должна составлять не менее 80% класса - 0,074 мм.
Все измельчительные агрегаты по своему принципу действия можно разделить на две основные группы: механические, и аэродинамические. Последние, применяются редко, лишь в случаях тонкого, и сверхтонкого измельчения материала.
Механические мельницы в зависимости от геометрической формы рабочего корпуса, разделяются на барабанные, кольцевые, чашевые и дисковые.
Барабанные мельницы широкого применения различаются между собой по следующим признакам: типу измельчаемой среды (шары, стержни, галька, куски руды);
геометрической форме барабана (короткий или длинный цилиндр, конус);
способу разгрузки материала из барабана (разгрузка периодическая или непрерывная, разгрузка через решетку или непосредственно через цапфу);
способу измельчения (сухой или мокрый).
Исходя из этого мельницы разделяются на стержневые, шаровые, рудногалечные и мельницы самоизмельчения.
Измельчение.
Руда в мельнице измельчается под действием удара падающих дробящих тел (шаров, стержней, крупных кусков руды). Кроме того измельчение происходит от соударения дробящих тел и внутренней поверхности мельниц.
Мельницы загружаются через пустотелую загрузочную цапфу с одного конца, а разгружаются с другого. Измельчение может быть мокрым и сухим.
Принцип работы всех мельниц одинаков, поэтому рассмотрим условия работы одной из них - шаровой.
В шаровых мельницах дробящими телами являются кованные или штампованные стальные шары, которые при вращении мельницы поднимаются на определенную высоту, и падая, измельчают руду.
Скорость вращения барабана, при которой шары прижимаются к внутренней поверхности барабана, под действием центробежной силы, называется критической.
Чем выше высота подъема шаров, тем сильнее их ударное воздействие на куски руды.
При небольшой скорости вращения барабана, шары будут скатываться с минимальной высоты, при этом вращаясь вокруг своей оси, работы не производят. Поэтому необходимо правильно определять скорость вращения барабана мельницы.
Наилучшими условиями работы мельницы является скорость вращения ее барабана в пределах 75 - 88% от критической. Если скорость составляет 25 - 30% критической, внешний слой шаров дробящего действия не производит, что уменьшает производительность мельницы и снижает ее полезный объем.
Оптимальная работа мельницы оценивается экономическими показателями, то есть в показатель эффективности входит главным образом стоимость расходуемой энергии, расхода дробящих тел и футеровки.
По опыту обогатительных фабрик, расход энергии при тонком измельчении составляет 10 - 15 КВТЧ на 1 т измельченной руды.
Перегрузка мельницы шарами ведет к повышенному расходу энергии и износу шаров, а недогрузка - резко снижает производительность, вызывает повышенный износ футеровочного материала, а также уменьшает внутреннюю поверхность барабана мельницы.
Наибольшая производительность мельницы соответствует ее загрузке шарами на 50% объема. Оптимальная масса шаровой загрузки зависит от окружной скорости вращения барабана мельницы и коэффициента ее заполнения. Обычно, уровень шаровой загрузки мельницы на несколько сантиметров ниже ее оси вращения.
Для скорости вращения равной 75 - 88% критической, оптимальная масса шаров для загрузки составляет 1700 - 1950 кг/м3 объема мельницы при плотности шаров 7,9 т/м3.
Л.Б. Левинсон предлагает определить наибольшую массу шаровой загрузки по формуле: G = 6440 R2L, кг
По данным В.А. Петрова и В.Ю. Бранда, массу шаровой загрузки мельницы диаметром барабана Д и длиной L, при коэффициенте заполнения Y (не более 0,4), можно определить по формуле: G = 3,77 УД2L, т при насыпной массе шаров - 4,8 т/м3.
Во время работы мельницы, шары постепенно изнашиваются, снижая часть шаровой загрузки, что снижает производительность мельницы. Поэтому в мельницу постоянно дозагружают определенное количество шаров.
Средний расход шаров на 1 тонну измельченного продукта показан в таблице 1.
Таблица 1
Материал шаров Крупность измельченного продукта
До 0,2 мм До 0,15 мм До 0,074 мм
Сталь Хромистая 0,5 0,75 1,0
Углеродистая 0,75 1,0 1,25
Чугун 1,0 1,25 1,25
Максимальная крупность шаров зависит от максимального размера крупности кусков руды. Для определения диаметра шаров, существуют следующие формулы: По Разумову К.А. Д = 25 3vd, где Д - диаметр шара, мм;
d - средний размер куска исходной руды.
По Орловскому В.А. Д = 6 (lgdk) vd, где dk - крупность готового продукта;
d - крупность исходной руды.
Мелкие шары размером 25 - 30 мм, не рекомендуется применять вместе с крупными, так как они быстро истираются и выносятся из мельницы.
При работе, шары изнашиваются и уменьшаются, ухудшая измельчение, поэтому периодически необходимо проводить пересортировку.
При этом мелкие шары удаляются, а в мельницу догружаются новые шары.