Principal Manifold Learning by Sparse Grids - Статья

бесплатно 0
4.5 43
The construction of lower-dimensional manifolds from high-dimensional data is an important task in data mining, machine learning and statistics. The authors consider principal manifolds as a regularized, non-linear empirical quantization error functional.


Заказать написание новой работы



Дисциплины научных работ



Хотите, перезвоним вам?