Особенности эконометрического метода. Спецификация моделей парной регрессии. Коэффициенты эластичности по разным видам регрессионных моделей. Спецификация моделей множественной регрессии. Понятие мультиколлениарности, ее значение при отборе факторов.
Аннотация к работе
Понятие, предмет, задачи эконометрики эконометрический метод регрессияФриш обнаружил «эффект деградации» коэффициентов регрессии: если в регрессию включается много переменных, имеющих линейные связи друг с другом, то коэффициенты регрессии имеют тенденцию возвращаться к тем значениям, которые они имели в уравнении с меньшим числом переменных. В этом случае следует попытаться выявить влияние других факторов, введя их в модель, т. е. построить уравнение множественной регрессии: Такого рода уравнение может использоваться при изучении потребления. Мультиколлинеарность может привести к нежелательным последствиям: 1) оценки параметров становятся ненадежными, обнаруживают большие стандартные ошибки и меняются с изменением объема наблюдений (не только в величине, но и по знаку), что делает модель непригодной для анализа и прогнозирования. Таким образом, при значении R близком к 1, уравнение регрессии лучше описывает фактические данные и факторы сильнее влияют на результат; при значении R близком к 0 уравнение регрессии плохо описывает фактические данные и факторы оказывают слабое воздействие на результат. Если распределение случайных остатков не соответствует некоторым предпосылкам МНК, то следует корректировать модель, изменить ее спецификацию, добавить (исключить) некоторые факторы, преобразовать исходные данные, что в конечном итоге позволяет получить оценки коэффициентов регрессии aj, которые обладают свойством несмещаемости, имеют меньшее значение дисперсии остатков, и в связи с этим более эффективную статистическую проверку значимости параметров регрессии.