Основы классификации и типы структур наноматериалов. Получение наночастиц высокочастотным индукционным нагревом и химическими методами. Основные технологии получения наноматериалов: аморфизация, пластическая деформация, порошковая металлургия и др.
Аннотация к работе
В настоящее время немногие знают, что такое нанотехнология, хотя за этой наукой стоит будущее. Также я хочу выяснить применение этой науки в различных отраслях и узнать, могут ли нанотехнологии быть опасны для человека. Область науки и техники, именуемая нанотехнологией, появилась сравнительно недавно. Точное определение нанотехнологий звучит так: нанотехнологии - это технологии, манипулирующие веществом на уровне атомов и молекул (поэтому нанотехнологии называют также молекулярной технологией). Среди основных составляющих науки о наноматериалах и нанотехнологиях можно выделить следующие: 1) фундаментальные исследования свойств материалов на наномасштабном уровне;Самый простой подход связан с геометрическими размерами структуры таких материалов. Согласно такому подходу материалы с характерным размером микроструктуры от 1 до 100 нм называют наноструктурными (или иначе нанофазными, нанокристаллическими, супрамолекулярными) [5-8]. Выбор такого диапазона размеров не случаен, а определяется существованием ряда размерных эффектов и совпадением размеров кристаллитов с характерными размерами для различных физических явлений. Величина верхнего предела обусловлена тем, что заметные и интересные с технической точки зрения изменения физико-механических свойств материалов (прочности, твердости, коэрцитивной силы и др.) начинаются при снижении размеров зерен именно ниже 100 нм [2,3,11]. Второй подход [5,11,23]связан с огромной ролью многочисленных поверхностей раздела в наноматериалах в формирование их свойств В соответствии с ним размер зерен (D) в наноматериалах определялся в интервале нескольких нанометров, т.е. в интервале, когда объемная доля поверхностей раздела в общем объеме материала составляет примерно DV»50% и более.Рисунок иллюстрирует метод синтеза наночастиц с помощью плазмы, создаваемой радиочастотными нагревательными катушками. В процессе этот металл разогревается выше точки испарения высоковольтными радиочастотными катушками, обмотки которых находятся снаружи вакуумированной камеры вблизи пестика.Для получения наночастиц могут применяться несколько типов восстановителей, например NABET3H, LIBET3H и NABH4, где Et - этиловый радикал (-C2H5).Первая категория включает материалы в виде твердых тел, размеры которых в одном, двух или трех пространственных координатах не превышают 100 нм. К таким материалам можно отнести наноразмерные частицы (нанопорошки), нанопроволоки и нановолокна., очень тонкие пленки (толщиной менее 100 нм), нанотрубки и т.п... Такие материалы могут содержать от одного структурного элемента или кристаллита (для частиц порошка) до нескольких их слоев (для пленки). В связи с этим первую категорию можно классифицировать как наноматериалы с малым числом структурных элементов или наноматериалы в виде наноизделий Такие материалы содержат уже значительное число структурных элементов и их можно классифицировать как наноматериалов с большим числом структурных элементов (кристаллитов) или наноматериалы в виде микроизделий.4.1): методы на основе порошковой металлургии, методы, в основе которых лежит получение аморфных прекурсоров, поверхностные технологии (создание покрытий и модифицированных слоев с наноструктурой), методы, основанные на использовании интенсивной пластической деформации, и комплексные методы, использующие последовательно или параллельно несколько разных технологий.Данные методы можно условно подразделить на две группы - методы получения нанопорошков и методы компактирования из них изделий. Ряд методов может в зависимости от их вариантов использоваться и для получения нанопорошков и для формования объемных изделий.Свойства наноматериалов в значительной степени определяются характером распределения, формой и химическим составом кристаллитов (наноразмерных элементов), из которых они состоят. Исходя из особенностей химического состава кристаллитов и их границ обычно выделяют четыре группы наноматериалов[5-7]. К первой относят такие материалы, у которых химический состав кристаллитов и границ раздела одинаковы. Ко второй группе относят материалы, у которых состав кристаллитов различается, но границы являются идентичными по своему химическому составу.Можно выделить ряд общих подходов, которые являются характерными для всех методов получения нанопорошков и отличают их от методов получения обычных порошков [6,7]: - высокая скорость образования центров зарождения частиц, - малая скорость роста частиц, - наибольший размер получаемых частиц не более 100 нм, - узкий диапазон распределения частиц по размерам, - стабильность получения частиц заданного размерного диапазона, - воспроизводимость химического и фазового состава частиц, - повышенные требования к контролю и управлению параметрами процесса получения. Основные из используемых в настоящее время методов получения нанопорошков Общей особенностью наночастиц порошков, полученных любым методом, является их склонность к объединению в агрегаты и агломераты [8].
План
Содержание
Введение
1. Понятие о наноматериалах. Основы классификации и типы структур наноматериалов
1.1 Терминология
1.2 Получение наночастиц
1.2.1 Высокочастотный индукционный нагрев
1.2.2 Химические методы
1.3 Основы классификации наноматериалов
2. Основные технологии получения наноматериалов
2.1 Методы порошковой металлургии
2.2 Основные типы структур наноматериалов
2.2.1 Методы получения нанопорошков
2.3 Методы с использованием аморфизации
2.4 Методы с использованием интенсивной пластической деформации
2.5 Методы с использованием технологий обработки поверхности
Заключение
Введение
В настоящее время немногие знают, что такое нанотехнология, хотя за этой наукой стоит будущее. Главной целью моей работы является ознакомление с нанотехнологией. Также я хочу выяснить применение этой науки в различных отраслях и узнать, могут ли нанотехнологии быть опасны для человека.
Область науки и техники, именуемая нанотехнологией, появилась сравнительно недавно. Перспективы этой науки грандиозны. Сама частица «нано» означает одну миллиардную долю какой-либо величины. Например, нанометр - одна миллиардная доля метра. Эти размеры схожи с размерами молекул и атомов. Точное определение нанотехнологий звучит так: нанотехнологии - это технологии, манипулирующие веществом на уровне атомов и молекул (поэтому нанотехнологии называют также молекулярной технологией).
Разработку новых материалов и технологий их получения и обработки в настоящее время общепризнанно относят к т.н. «ключевым» или «критическим» аспектам основы экономической мощи и обороноспособности государства. Одним из приоритетных направлений развития современного материаловедения являются наноматериалы и нанотехнологии.
К наноматериалам условно относят дисперсные и массивные материалы, содержащие структурные элементы (зерна, кристаллиты, блоки, кластеры), геометрические размеры которых хотя бы в одном измерении не превышают 100 нм, и обладающие качественно новыми свойствами, функциональными и эксплуатационными характеристиками. К нанотехнологиям можно отнести технологии, обеспечивающие возможность контролируемым образом создавать и модифицировать наноматериалы, а также осуществлять их интеграцию в полноценно функционирующие системы большего масштаба.
Среди основных составляющих науки о наноматериалах и нанотехнологиях можно выделить следующие: 1) фундаментальные исследования свойств материалов на наномасштабном уровне;
2) развитие нанотехнологий как для целенаправленного создания наноматериалов, так и поиска и использования природных объектов с наноструктурными элементами, создание готовых изделий с использованием наноматериалов и интеграция наноматериалов и нанотехнологий в различные отрасли промышленности и науки;
3) развитие средств и методов исследования структуры и свойств наноматериалов, а также методов контроля и аттестации изделий и полуфабрикатов для нанотехнологий.
Начало XXI века ознаменовалось революционным началом развития нанотехнологий и наноматериалов. Они уже используются во всех развитых странах мира в наиболее значимых областях человеческой деятельности (промышленности, обороне, информационной сфере, радиоэлектронике, энергетике, транспорте, биотехнологии, медицине). Анализ роста инвестиций, количества публикаций по данной тематике и темпов внедрения фундаментальных и поисковых разработок позволяет сделать вывод о том, что в ближайшие 20 лет использование нанотехнологий и наноматериалов будет являться одним из определяющих факторов научного, экономического и оборонного развития государств. Некоторые эксперты даже предсказывают, что XXI века будет веком нанотехнологий ( по аналогии с тем как XIX век называли веком пара, а XX век - веком атома и компьютера).
Такие перспективы требуют оперативного внедрения в образовательные программы дисциплин, необходимых для подготовки специалистов, способных эффективно и на современном уровне решать фундаментальные и прикладные задачи в области наноматериалов и нанотехнологий.