Значение термина "синергетика", история ее возникновения. Основные принципы бытия (гомеостатичность, иерархичность) и становления (нелинейность, неустойчивость, незамкнутость, динамическая иерархичность, наблюдаемость). Эволюционная кибернетика.
Аннотация к работе
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образованияВ последние годы наблюдается стремительный и бурный рост интереса к междисциплинарному направлению, получившему название «синергетика». Для публикаций на тему синергетики характерно то, что в них нередко приводятся авторские трактовки принципов синергетики, причем трактовки довольно разнородные и не всегда достаточно аргументированные. Синергетика - (от греч. synergetikos - совместный, согласованный, действующий), научное направление, изучающее связи между элементами структуры (подсистемами), которые образуются в открытых системах (биологических, физико-химических и других) благодаря интенсивному (потоковому) обмену веществом и энергией с окружающей средой в неравновесных условиях. Именно он ввел понятия аттракторов (притягивающих множеств в пространствах состояний открытых системах), точек бифуркаций (значений параметров задачи, при которых появляются альтернативные решения, либо теряют устойчивость существующие), неустойчивых траекторий и динамического хаоса в задаче трех тел небесной механики (притяжение Земля-Луна-Солнце). Этот период можно назвать "синергетикой до синергетики", т.к. сам термин еще не использовался.Любой эволюционный процесс выражен чередой смен оппозиционных качеств - условных состояний порядка и хаоса в системе, которые соединены фазами перехода к хаосу (гибели структуры) и выхода из хаоса (самоорганизации). Из этих четырех стадий лишь одну стабильную мы относим к Бытию, гомеостазу системы, зачастую она наиболее протяженная по времени, остальные три так или иначе связаны с хаосом и относятся к Становлению или кризису.Хакена, наличие устойчивых диссипативных структур - аттракторов на которых функционирует система. Цель-программу поведения системы в состоянии гомеостаза называют аттрактор (притягиватель). Эти структуры существуют лишь пока в систему подается поток вещества и энергии - так называемые диссипативные (рассеивающие энергию) структуры, далекие от равновесия. Именно такими структурами являются все живые системы, они умирают без постоянной прокачки вещества и энергии через систему, без обмена веществ. Описанная природа параметров порядка называется принципом подчинения, когда изменение параметра порядка как бы синхронно дирижирует поведением множества элементов низшего уровня, образующих систему.Начнем с первых трех принципов, "ТРЕХ НЕ", которых всячески избегала классическая методология, но которые позволяют войти системе в хаотическую креативную фазу. Последнее, в частности, следует из того факта, что в системе число связей между ее элементами растет быстрее числа самих элементов. Постепенно раскачивая застрявший автомобиль он некоторое время совершает малые линейные колебания (колесо возвращается на дно ямки), но при достаточном размахе (закатывании на бугорок) колебания становятся нелинейными, возвращающая сила начинает убывать и колесо выскакивает из ямы, система преодолевает границу области притяжения, гомеостаза, движение обретает качество свободы. Поэтому, хотя в природе все системы в той или иной степени открыты, исторически первой классической идеализацией было понятие, модель замкнутой, изолированной системы, системы не взаимодействующей с другими телами. Важно понять, что любую систему можно с заданной точностью считать замкнутой достаточно малое время, тем меньшее, чем больше открыта система.Анализ искусственных информационных систем менее интересен, во-первых, потому что известно, как такие системы эволюционировали, во-вторых, биологические кибернетические системы содержательно значительно богаче искусственных. Кратко и очень упрощенно суть теории метасистемных переходов сводится к следующему: переход от нижних уровней системной иерархии к верхним происходит путем метасистемных переходов. Каждый метасистемный переход можно рассматривать как объединение ряда подсистем Si нижнего уровня и появление дополнительного механизма управления C объединенными подсистемами. В результате метасистемного перехода формируется система S" нового уровня (S" = C Si), которая может быть включена как подсистема в следующий метасистемный переход. Он уделяет особое внимание количественному накоплению "потенциала развития" в подсистемах Si перед метасистемным переходом на качественно новый уровень иерархии, а также процессу размножения и развития подсистем предпоследнего уровня иерархии после метасистемного перехода.В своей работе я рассмотрел понятие «синергетика», предпосылки ее возникновения, а также принципы, на которых базируется это междисциплинарное направление.
План
Оглавление
Введение
1. Понятие «синергетика». Немного истории
2. Принципы синергетики
3. Принципы Бытия
4. Принципы Становления
5. Эволюционная кибернетика
Заключение
Список литературы
Введение
В последние годы наблюдается стремительный и бурный рост интереса к междисциплинарному направлению, получившему название «синергетика». Издаются солидные монографии, учебники, выходят сотни статей, проводятся национальные и международные конференции. Трудно или даже невозможно назвать область знания, в которой сегодня не проводились бы исследования под рубрикой синергетики. Для публикаций на тему синергетики характерно то, что в них нередко приводятся авторские трактовки принципов синергетики, причем трактовки довольно разнородные и не всегда достаточно аргументированные. Причиной этого является отсутствие достаточной определенности относительно основных положений синергетики и возникающей отсюда необходимости уточнения статуса излагаемого материала.
1. Понятие «синергетика». Немного истории
Синергетика - (от греч. synergetikos - совместный, согласованный, действующий), научное направление, изучающее связи между элементами структуры (подсистемами), которые образуются в открытых системах (биологических, физико-химических и других) благодаря интенсивному (потоковому) обмену веществом и энергией с окружающей средой в неравновесных условиях. В таких системах наблюдается согласованное поведение подсистем, в результате чего возрастает степень ее упорядоченности, т. е. уменьшается энтропия (самоорганизация).
Создателем синергетического направления и изобретателем термина "синергетика" является профессор Штутгартского университета и директор Института теоретической физики и синергетики Герман Хакен.
История методов синергетики связана с именами многих выдающихся ученых ХХ века. Прежде всего, это великий французский математик, физик и философ Анри Пуанкаре, который уже в конце XIX века заложил основы методов нелинейной динамики и качественной теории дифференциальных уравнений. Именно он ввел понятия аттракторов (притягивающих множеств в пространствах состояний открытых системах), точек бифуркаций (значений параметров задачи, при которых появляются альтернативные решения, либо теряют устойчивость существующие), неустойчивых траекторий и динамического хаоса в задаче трех тел небесной механики (притяжение Земля-Луна-Солнце).
В первой половине ХХ века большую роль в развитии методов нелинейной динамики играла русская и советская школа математиков и физиков: А.М. Ляпунов, Н.Н. Боголюбов, Л.И. Мандельштамм, А.А. Андронов, А.Н. Колмогоров, А.Н. Тихонов. Эти исследования стимулировались в большой мере решением стратегических оборонных задач: создание ядерного оружия, освоение космоса. Западные ученые также использовали первые оборонные ЭВМ при обнаружении неравновесных тепловых структур: модель морфогенеза (А.М. Тьюринга) и уединенных волн - солитонов (Э. Ферми). Этот период можно назвать "синергетикой до синергетики", т.к. сам термин еще не использовался.
В 60-70 годы происходит подлинный прорыв в понимании процессов самоорганизации в самых разных явлениях природы и техники. Перечислим некоторые из них: теория генерации лазера Г.Б. Басова, А.М. Прохорова, Ч. Таунса; колебательные химические реакции Б.П. Белоусова и А.М. Жаботинского - основа биоритмов живого; теория диссипативных структур И. Пригожина; теория турбулентности А.Н. Колмогорова и Ю.Л. Климонтовича. Неравновесные структуры плазмы в термоядерном синтезе изучались Б.Б. Кадомцевым А.А. Самарским, С.П. Курдюмовым. Теория активных сред и биофизические приложения самоорганизации исследовались А.С. Давыдовым, Г.Р. Иваницким, И.М. Гельфандом, Молчановым А.М., Д.С. Чернавским. В 1963 году происходит эпохальное открытие динамического хаоса, сначала в задачах прогноза погоды (Э. Лоренц), затем теоретически, начинается изучение странных аттракторов в работах Д. Рюэля, Ф. Такенса, Л.П. Шильникова. Для странных аттракторов характерна неустойчивость решения по начальным данным, знаменитый "эффект бабочки", взмах крыльев которой может радикально изменить дальний прогноз погоды - образ динамического хаоса. Создаются универсальная теория катастроф (скачкообразных изменений состояний систем) Р. Тома и В.И. Арнольда и развиваются ее приложения в психологии и социологии; теория аутопоэзиса живых систем У. Матураны и Ф. Вареллы. Круг этих методов и подходов в изучении сложных систем Герман Хакен и назовет в 1970 году синергетикой (теорией коллективного, кооперативного, комплексного поведения систем), предварительно эффективно применив их в теории генерации лазера.
В 80-90 годы продолжается изучение динамического хаоса и проблемы сложности. В связи с созданием новых поколений мощных ЭВМ, развиваются фрактальная геометрия (Б. Мандельброт), геометрия самоподобных объектов (типа облака, кроны дерева, береговая линия), которая описывает структуры динамического хаоса и позволяет эффективно сжимать информацию при распознавании и хранении образов. Были обнаружены универсальные сценарии перехода к хаосу М. Фейгенбаума, Ив. Помо. В 1990 году открыт феномен самоорганизованной критичности. Его можно исследовать, рассматривая кучу песка (П. Бак). Сходящие лавинки воспроизводят распределения Парето по величинам событий для биржевых кризисов, землетрясений, аварий сложных технических комплексов и т.д.
Сегодня синергетика быстро интегрируется в область гуманитарных наук, возникли направления социосинергетики и эволюционной экономики, применяют ее психологи и педагоги, развиваются приложения в лингвистике, истории и искусствознании, реализуется проект создания синергетической антропологии.
Тем не менее, такой рост вширь иногда сводится лишь к декларациям о намерениях, поскольку междисциплинарность в современной науке предполагает взаимосогласованное использование образов, представлений методов и моделей дисциплин как естественнонаучного и технического, так и социогуманитарного профиля. Это в свою очередь, предполагает, помимо всего прочего, существование единой научной картины мира. В то же время сейчас такой общенаучной (междисциплинарной) единой картины мира (в смысле самосогласованной целостности), строго говоря, нет. Существуют ее отдельные фрагменты, именуемые специальными картинами мира, дисциплинарными онтологиями такие, например, как: физическая, биологическая, космологическая картины мира, репрезентирующие предметы каждой отдельной науки. Синергетика и пытается навести мосты между этими картинами, создать единое поле междисциплинарной коммуникации, сформировать принципы новой картины мира.
Вывод
В своей работе я рассмотрел понятие «синергетика», предпосылки ее возникновения, а также принципы, на которых базируется это междисциплинарное направление. Чуть подробнее рассмотрел основы эволюционной кибернетики, являющейся одной из дисциплин синергетики.
Напоследок можно сказать, что в настоящий момент синергетическое учение претендует на роль если и не всеобщего, то, по крайней мере, естественнонаучного мировоззрения.
Список литературы
1. Аршинов В.И. Синергетика как феномен постнеоклассической науки, М. ИФ РАН, 1999