Получение меди - Реферат

бесплатно 0
4.5 27
Медь как элемент одиннадцатой группы четвёртого периода периодической системы химических элементов Менделеева. Физико-механические свойства металла. Сульфидные и окисленные руды. Кристаллизация по типу централизованного куба. Скрытая теплота плавления.


Аннотация к работе
Министерство образования и науки Российской Федерации ФГАОУ ВПО «Уральский федеральный университет имени первого Президента России Б. Н. Кафедра «Теория металлургических процессов»По электропроводности медь занимает второе место среди всех металлов, после серебра. Если в 19 в. медь добывалась из руд, где содержалось 6-9% этого элемента, то сейчас 5%-ные медные руды считаются очень богатыми, а промышленность многих стран перерабатывает руды, в которых всего 0,5% меди. В степях и пустынях (с характерными для них слабощелочными растворами) медь малоподвижна; на участках месторождений меди наблюдается ее избыток в почвах и растениях, отчего болеют домашние животные. Поэтому глины и сланцы несколько обогащены медью (5,7-10-3 %), а морская вода резко недосыщена медью (3-10-7 %). Медь энергично мигрирует и в подземных водах биосферы, с этими процессами связано накопление руд меди в песчаниках.Благодаря этим свойствам медь - основной материал для проводов; свыше 50% добываемой меди применяют в электротехнической промышленности. Высокие теплопроводность и сопротивление коррозии позволяют изготовлять из меди ответственные детали теплообменников, холодильников, вакуумных аппаратов и т. п. Около 30-40% меди используют в виде различных сплавов, среди которых наибольшее значение имеют латуни (от 0 до 50% Zn) и различные виды бронз: оловянистые, алюминиевые, свинцовистые, бериллиевые и т. д. Кроме нужд тяжелой промышленности, связи, транспорта, некоторое количество меди (главным образом в виде солей) потребляется для приготовления минеральных пигментов, борьбы с вредителями и болезнями растений, в качестве микроудобрений, катализаторов окислительных процессов, а также в кожевенной и меховой промышленности и при производстве искусственного шелка.

План
Оглавление

Введение

Медь в природе

Физические свойства меди

Химические свойства меди

Сплавы меди

Способы получения чистой меди

Заключение

Список литературы

Введение
Медь (лат.Cuprum) - химический элемент. Один из семи металлов, известных с глубокой древности. По некоторым археологическим данным медь была хорошо известна египтянам еще за 4000 лет до Р.Хр. Знакомство человечества с медью относится к более ранней эпохе, чем с железом; это объясняется с одной стороны более частым нахождением меди в свободном состоянии на поверхности земли, а с другой - сравнительной легкостью получения ее из соединений. Древняя Греция и Рим получали медь с острова Кипра (Cyprum),откуда и название ее Cuprum. Особенно важна медь для электротехники. медь кристаллизация химический

По электропроводности медь занимает второе место среди всех металлов, после серебра. Однако в наши дни во всем мире электрические провода, на которые раньше уходила почти половина выплавляемой меди, все чаще делают из алюминия. Он хуже проводит ток, но легче и доступ нее. Медь же, как и многие другие цветные металлы, становится все дефицитнее. Если в 19 в. медь добывалась из руд, где содержалось 6-9% этого элемента, то сейчас 5%-ные медные руды считаются очень богатыми, а промышленность многих стран перерабатывает руды, в которых всего 0,5% меди.

Медь входит в число жизненно важных микроэлементов. Она участвует в процессе фотосинтеза и усвоении растениями азота, способствует синтезу сахара, белков, крахмала, витаминов. Чаще всего медь вносят в почву в виде пятиводного сульфата медного купороса. В значительных количествах он ядовит, как и многие другие соединения меди, особенно для низших организмов. В малых же дозах медь совершенно необходима всему живому.

Медь в природе

Среднее содержание меди в земной коре 4,7-10-3 % (по массе), в нижней части земной коры, сложенной основными породами, ее больше (1-10-2 %), чем в верхней (2-10-3 %), где преобладают граниты и другие кислые изверженные породы. Медь энергично мигрирует как в горячих водах глубин, так и в холодных растворах биосферы; сероводород осаждает из природных вод различные сульфиды меди, имеющие большое промышленное значение. Среди многочисленных минералов меди преобладают сульфиды, фосфаты, сульфаты, хлориды, известны также самородная медь, карбонаты и окислы.

Медь - важный элемент жизни, она участвует во многих физиологических процессах. Среднее содержание меди в живом веществе 2-10-4 %, известны организмы - концентраторы меди. В таежных и других ландшафтах влажного климата медь сравнительно легко выщелачивается из кислых почв, здесь местами наблюдается дефицит меди и связанные с ним болезни растений и животных (особенно на песках и торфяниках). В степях и пустынях (с характерными для них слабощелочными растворами) медь малоподвижна; на участках месторождений меди наблюдается ее избыток в почвах и растениях, отчего болеют домашние животные.

В речной воде очень мало меди, 1-10-7 %. Приносимая в океан со стоком медь сравнительно быстро переходит в морские илы. Поэтому глины и сланцы несколько обогащены медью (5,7-10-3 %), а морская вода резко недосыщена медью (3-10-7 %).

В морях прошлых геологических эпох местами происходило значительное накопление меди в илах, приведшее к образованию месторождений (например, Мансфельд в Германии). Медь энергично мигрирует и в подземных водах биосферы, с этими процессами связано накопление руд меди в песчаниках.

Медь образует до 240 минералов, однако лишь около 40 имеют промышленное значение.

Различают сульфидные и окисленные руды меди. Промышленное значение имеют сульфидные руды, из которых наиболее широко используется медный колчедан (халькопирит) CUFES2. В природе он встречается главным образом в смеси с железным колчеданом FES2 и пустой породой, состоящей из оксидов Si, Al, Ca и др. Часто сульфидные руды содержат примеси благородных металлов (Аи, Ag), цветных и редких металлов (Zn, Pb, Ni, Co, Mo и др.) и рассеянных элементов (Ge и др.).

Содержание меди в руде обычно составляет 1-5%, но благодаря легкой флотируемости халькопирита его можно обогащать, получая концентрат, содержащий 20% меди и более [1845]. Наиболее крупные запасы медных руд сосредоточены главным образом на Урале, в Казахстане, Средней Азии, Африке (Катанта, Замбия), Америке (Чили, США, Канада).

Физические свойства меди

Металлы подгруппы меди, как и щелочные металлы, имеют по одному свободному электрону на один ион-атом металла. Казалось бы, эти металлы не должны особенно сильно отличатся от щелочных. Но они, в отличие от щелочных металлов, обладают довольно высокими температурами плавления. Большое различие в температурах плавления между металлами этих подгрупп объясняется тем, что между ион-атомами металлов подгруппы меди почти нет “зазоров” и они расположены более близко. Вследствие этого количество свободных электронов в единице объема, электронная плотность, у них больше. Следовательно, и прочность химической связи у них больше. Поэтому металлы подгруппы меди плавятся и кипят при более высоких температурах.

Металлы подгруппы меди обладают, по сравнению с щелочными металлами, обладают большей твердостью. Объясняется это увеличением электронной плотностью и отсутствием “зазоров” между ион-атомами.

Необходимо отметить, что твердость и прочность металлов зависят от правильности расположения ион-атомов в кристаллической решетке. В металлах, с которыми мы практически сталкиваемся, имеются различного рода нарушения правильного расположения ион-атомов, например пустоты в узлах кристаллической решетки. К тому же металл состоит из мелких кристалликов (кристаллитов), между которыми связь ослаблена. В Академии Наук СССР была получена медь без нарушения в кристаллической решетке. Для этого очень чистую медь возгоняли при высокой температуре в глубоком вакууме на глубокую подложку. Медь получалась в виде небольших ниточек - “усов”. Как оказалось такая медь в сто раз прочнее, чем обычная.

Цвет меди и ее соединений

Чистая медь обладает и другой интересной особенностью. Красный цвет обусловлен следами растворенного в ней кислорода. Оказалось, что медь, многократно возогнанная в вакууме (при отсутствии кислорода), имеет желтоватый цвет. Медь в полированном состоянии обладает сильным блеском.

При повышении валентности понижается окраска меди, например CUCL - белый, Cu2O - красный, CUCL H2O - голубой, CUO - черный. Карбонаты характеризуются синим и зеленым цветом при условии содержания воды, чем обусловлен интересный практический признак для поисков.

Электропроводимость

Медь обладает наибольшей (после серебра) электропроводимостью, чем и обусловлено ее применение в электронике.

Медь кристаллизируется по типу централизованного куба (рис 1).

Рисунок 1. Кристаллическая решетка меди.

Плотность r , кг/м3 8890

Температура плавления Тпл, ° С 1083

Скрытая теплота плавления D Нпл, Дж/г 208

Теплопроводность l , Вт/ (м ? град), при 20-100 ° С 390

Удельная теплоемкость Ср, Дж/ (г ? К), при 20-100 ° С 0,375

Коэффициент линейного расширения a ? 10-6, град-1, при 0-100 ° С 16,8

Удельное электросопротивление r ? 108, Ом ? м, при 20-100 ° С 1,724

Температурный коэффициент электросопротивления, град-1, при 20-100 ° С 4,3? 10-3

Предел прочности s в, МПА мягкой меди (в отожженном состоянии) 190-215 твердой меди (в нагартованном состоянии) 280-360

Относительное удлинение d , % мягкой меди (в отожженном состоянии) 60 твердой меди (в нагартованном состоянии) 6

Твердость по Бринеллю НВ, МПА мягкой меди (в отожженном состоянии) 45 твердой меди (в нагартованном состоянии) 110

Предел текучести s t , МПА мягкой меди (в отожженном состоянии) 60-75 твердой меди (в нагартованном состоянии) 280-340

Ударная вязкость KCU, Дж/см2 630-470

Модуль сдвига G ? 10-3, МПА 42-46

Модуль упругости Е ? 10-3, МПА мягкой меди (в отожженном состоянии) 117-126 твердой меди (в нагартованном состоянии) 122-135

Температура рекристаллизации, ° С 180-300

Температура горячей деформации, ° С 1050-750

Температура литья, ° С 1150-1250

Линейная усадка, % 2,1

Химические свойства меди

В сухом воздухе медь практически не окисляется, с водой не взаимодействует и является довольно инертным металлом.

Взаимодействие с неметаллами

С кислородом в зависимости от температуры взаимодействия медь образует два оксида: при 400-500°С образуется оксид двухвалентной меди: 2Cu O2 = 2CUO;

при температуре выше 1000°С получается оксид меди (I): 4Cu O2 = 2Cu2O.

Аналогично реагирует с серой: при 400°С образуется сульфид меди (II): Cu S = CUS;

при температуры выше 400°С получается сульфид меди (I): 2Cu S = Cu2S.

При нагревании с фтором, хлором, бромом образуются галогениды меди (II): Cu Br2 = CUBR2;

с йодом - образуется йодид меди (I): 2Cu I2 = 2CUI.

Медь не реагирует с водородом, азотом, углеродом и кремнием.

Взаимодействие с кислотами

В электрохимическом ряду напряжений металлов медь расположена после водорода, поэтому она не взаимодействует с растворами разбавленной соляной и серной кислот и щелочей.

Растворяется в разбавленной азотной кислоте с образованием нитрата меди (II) и оксида азота (II): 3Cu 8HNO3 = 3Cu(NO3)2 2NO 4H2O.

Реагирует с концентрированными растворами серной и азотной кислот с образованием солей меди (II) и продуктов восстановления кислот: Cu 2H2SO4 = CUSO4 SO2 2H2O;

Cu 4HNO3 = Cu(NO3)2 2NO2 2H2O.

С концентрированной соляной кислотой медь реагирует с образованием трихлорокупрата (II) водорода: Cu 3HCL = H[CUCL3] H2.

Взаимодействие с аммиаком

Медь растворяется в водном растворе аммиака в присутствии кислорода воздуха с образованием гидроксида тетраамминмеди (II): 2Cu 8NH3 2H2O O2 = 2[Cu(NH3)4](OH)2.

Восстановительные свойства

Медь окисляется оксидом азота (IV) и хлоридом железа (III): 2Cu NO2 = Cu2O NO;

Cu 2FECL3 = CUCL2 2FECL2.

Сплавы меди

Сплавы на основе меди, содержащие Zn, Sn, Al, Ni, Fe, Mn, Si, Be, Cr, Pb, P и другие легирующие элементы (в сумме до 50%). Сплавы меди, состоящие из Cu и одного легирующего элемента, называют двойными или простыми, содержащие несколько легирующих элементов - многокомпонентными или сложными.

В двухкомпонентных сплавах меди легирующий элемент образует с Cu твердые растворы замещения, или интерметаллиды. имеющие определенное соотношение числа валентных электронов к числу атомов (э/а). Обычно э/а составляет 3/2 (напр., для CUZN, Cu3Al, Cu5Sn), 21/13 (Cu5Zn8, Cu9Al4, Cu31Sn8) и 7/4 (CUZN3, Cu3Sn). Кроме того, в сплавах меди часто наблюдается образование более сложных интерметаллических соединений.

По основным легирующим элементам сплавы меди разделяют на бронзы, латуни и медноникелевые сплавы.

Бронзы - сплавы Cu, легированные различными химическими элементами (Sn, Al, Be, Pb и др.), кроме Zn и Ni.

Латуни - медно-цинковые сплавы, содержащие от 4 до 50% Zn. Двойные латуни с содержанием Zn до 10% называют томпаками, до 20% - полутомпаками. Маркируют двойные латуни буквой "Л" и цифрой, указывающей на содержание Cu в сплаве. Среди двойных латуней наиболее распространены сплавы, содержащие 30, 32 и 37% Zn. Латуни с содержанием Zn до 32% являются однофазными (?-латуни), содержащие 32-50%-двухфазными системами (содержат ?- и ?-фазы). ?-Латуни представляют собой твердые растворы замещения Zn в Cu и имеют гранецентрированную кубическую решетку; ?-латуни образуют соединения с э/а = 3/2 и имеют объемноцентрированную кубическую решетку.

Сложные латуни получают дополнительным легированием простых латуней различными элементами, например Al, Mn, Sn, Ni, Fe. В марках легированных латуней буквами обозначают качественный состав сплава, числами - содержание компонентов; первое число означает содержание Cu, следующие - легирующих добавок. Легирующие элементы обозначают буквами: А-Al, H-Ni, О-Sn, Ц-Zn, C-Pb, Ж-Fe, Мц-Mn, К-Si, Ф-Р, Т-Ті. Наиболее распространены: оловянная адмиралтейская, или морская (ЛО62-1), алюминиевая, никелевая или алюмоникелевая (марка последней ЛАН59-3-2) и железомарганцевая (ЛЖМЦ59-1-1). Созданы также многофазные (дисперснотвердеющие) латуни, упрочнение которых достигается термической обработкой со старением, например ЛАНКМЦ75-2-2,5-0,5-0,5.

Получают латуни сплавлением меди с легирующими элементами, обычно в электрических индукционных печах. Получение латуни прямым сплавлением элементов затруднено изза большой разницы температур плавления этихметаллов и большой упругости пара Zn, поэтому при сплавлении обычно вводят лигатуру (небольшое колво готового сплава Cu-Zn), облегчающую сплавление компонентов. Обрабатывают латуни давлением (деформируемые латуни) или с использованием литья. Латуни отличаются хорошими механическими свойствами, высокой коррозионной стойкостью,пластичностью. прочностью. Зависимость прочности, пластичности и электрического сопротивления латуней от содержания Zn показана на рисунке. Латуни превосходят Cu по прочности на растяжение: spact для Cu 450 МПА, для ЛАЖ > 600 МПА, для ?-латуни > 740 МПА при удлинении (d) более 12%. Используют латуни для произ-ва листов, лент, полос, труб, проволоки, которые изготовляют при горячей или холодной обработке расплава. Из полученных полуфабрикатов изготовляют электротехнические и машиностроительные детали, части приборов, медали, сетки и пр.

К медно-никелевым сплавам относятся мельхиоры (содержат 20-30% Ni и легирующие элементы Fe, Mn и др.), нейзильбер (5-35% Ni, 12-46% Zn), константан (40% Ni, 1,5% Mn), манганин (30% Ni, 12% Mn) и др. Никель образует с медью непрерывный ряд твердых растворов, его введение повышает коррозионную стойкость, твердость, прочность, модуль упругости и температуру плавления сплава, понижает его теплопроводность, электрическая проводимость и температурный коэффициент электрического сопротивления. Медноникелевые сплавы обрабатывают давлением в горячем и холодном состоянии. Применяют в кораблестроении, для изготовления деталей, работающих при повышенной температуре и давлении.

Все сплавы меди обладают высокой стойкостью против атмосферной и газовой коррозии. Для латуней, нейзильбера, бериллиевых и других бронз она составляет (0,5-30).10-4 мм в год. Существенно замедляют их окисление Be, Zn и Al, способствующие образованию на поверхности сплава защитной пленки; заметно уменьшают коррозию также Si, Sn, Zn, Cd; не влияют - Fe, Ni, Co, Mn, Sb, Ag, P; присутствие в сплаве Cr, Se, As ускоряет его окисление. Сплавы меди устойчивы в атмосфере СО2, сухого NH3, незагрязненного сухого и влажного водяного пара. При длительной (десятки лет) атмосферной коррозии латунь подвергается обесцинкованию. Этот процесс протекает вследствие селективной коррозии Zn или перехода в результате коррозии в раствор Cu и Zn с последующим осаждением Cu в сплаве. При этом наблюдается сохранение медного остова, изделие не меняет своей формы, но утрачивает прочность. Латуни с повышенным содержанием Zn наиболее подвержены такому виду коррозии. Склонность сплавы меди к обесцинкованию уменьшается в присутствии добавок As (не более 0,5% по массе). Подобная селективная коррозия характерна также для алюминиевых и оловянных бронз.

Сплавы меди слабо поддаются почвенной коррозии. Исключение - латуни, которые в этих условиях подвержены обесцинкованию. В естественных водных (речных и морских) средах сплавы меди подвергаются кавитационному разрушению (например, разрушение корабельных винтов), являющемуся результатом коррозии и действия на сплав высокотурбулентного потока воды.

Скорость коррозии в кислотных средах возрастает с повышением температуры, концентрации кислоты, степени аэрации раствора и скорости потока. Наиболее стойки к кислотам оловянные, алюминиевые и кремнистые бронзы, а также медноникелевые сплавы; применять латуни в контакте с кислотами не рекомендуется. В окислит. средах и горячих щелочных растворах все сплавы меди быстро разрушаются. сплавы меди нельзя также использовать в контакте с Н2О2, расплавленной серой, H2S и SO2. Галогены в сухих условиях мало действуют на сплавы меди, но при наличии влаги вызывают коррозию. На пов-сти сплавы меди образуются защитные пленки Cu2O, Cu(OH)2, CUCO3 и других соединений Cu, слабо растворимых в воде. Это способствует появлению с течением времени на поверхности так называемой патины, которая придает художественным изделиям из сплавы меди особый внешний вид.

Специфическая особенность нейзильбера, латуней, бериллиевых, марганцевых и алюминиевых бронз - склонность к коррозии под напряжением, т.е. растрескиванию при одновременном воздействии внеш. сил или остаточных внутренних механических напряжений и коррозионной среды. Такая коррозия возникает в присутствии NH3, паров Hg, растворов ее солей, в загрязненной влажной атмосфере (сезонная болезнь). Предотвращают коррозионное растрескивание отжигом при температуре 250-800°С, снимающим внутреннее напряжение сплава, или легированием.

Механические свойства сплавы меди изменяются в широких пределах при холодной обработке давлением и при отжиге. Холодной деформацией (наклепом) можно увеличить твердость и предел прочности сплавы меди в 1,5-3 раза при одновременном снижении пластичности, которую затем восстанавливают отжигом. Смягчающий отжиг латуней и бронз после холодной обработки проводят при 600-700 °С.

По назначению сплавы меди подразделяют на антифрикционные, жаропрочные, конструкционные, пружинные и электротехнические. К первым относят свинцовистую бронзу, легированные алюминиевые бронзы, свинцовистую латунь. Применяют их для заливки стальных вкладышей тяжелогруженых подшипников, для изготовления узлов трения, втулок, фрикционных дисков и пр. Жаропрочные сплавы меди содержат от одного до трех легирующих компонентов (напр., Со, Cr, Mg, Zr) и обычно перед использованием подвергаются термической обработке. Предназначены для изготовления проводников электрического тока, эксплуатируемых при высокой температуре, электродов сварочных машин и т. п. К конструкционным сплавы меди относят главным образом двойные латуни и латуни, легированные небольшими добавками Sn, Al, Fe, Si, Ni, Mn. Из них изготовляют трубы для конденсаторов и радиаторов, посуду, гильзы и др. Пружинные сплавы - главным образом бериллиевые бронзы, медноникелевые сплавы. Их применяют для изготовления пружин, эксплуатируемых до температуры 130°С. Электротехнический сплавы меди отличаются малым температурным коэффициент электрического сопротивления, жаропрочностью. Используют такие сплавы для изготовления электрических приборов, реостатов, резисторов.

Способы получения чистой меди

Конечной задачей металлургии меди, как и любого другого металлургического производства, является получение металлов из перерабатываемого сырья в свободном металлическом состоянии или в виде химического соединения. На практике эта задача решается с помощью специальных металлургических процессов, обеспечивающих отделение компонентов пустой породы от ценных составляющих сырья.

Получение металлической продукции из руд, концентратов или других видов металлосодержащего сырья - задача достаточно трудная. Она существенно усложняется для медных и никелевых руд, которые, как правило, являются сравнительно бедным и сложным по составу полиметаллическим сырьем. При переработке такого сырья металлургическими способами необходимо одновременно с получением основного металла обеспечить комплексное выделение всех других ценных компонентов в самостоятельные товарные продукты при высокой степени их извлечения. В конечном итоге металлургическое производство должно обеспечить полное использование всех без исключения компонентов перерабатываемого сырья и создание безотходных (безотвальных) технологий.

Как указывалось ранее, основная масса медных руд состоит из соединений меди, железа и пустой породы, поэтому конечная цель металлургической переработки этих руд сводится к получению металлургического продукта за счет полного удаления пустой породы, железа и серы (в случае переработки сульфидного сырья).

Для получения металлов достаточно высокой чистоты из сложного полиметаллического сырья с высокой степенью комплексности его использования не достаточно применить один металлургический процесс или один металлургический агрегат. Эта задача до настоящего времени реализуется в практических условиях использованием нескольких последовательно проводимых процессов, обеспечивающих постепенное разделение компонентов перерабатываемого сырья.

Весь комплекс применяемых металлургических процессов, подготовительных и вспомогательных операций формируется в технологическую схему участка, отделения, цеха или предприятия в целом. Для всех предприятий, занимающихся переработкой меди, характерны многоступенчатые технологические схемы.

В основе любого металлургического процесса лежит принцип перевода обрабатываемого сырья в гетерогенную систему, состоящую из двух, трех, а иногда и более фаз, которые должны отличаться друг от друга составом и физическими свойствами. При этом одна из фаз должна обогащаться извлекаемым металлом и обедняться примесями, а другие фазы, наоборот, обедняться основным компонентом. Различия некоторых физических свойств получающихся фаз (плотности, агрегатного состояния, смачиваемости, растворимости и т.п.) обеспечивают хорошее отделение их друг от друга простыми технологическими приемами, например, отстаиванием или фильтрацией.

Высокая степень комплексности использования сырья является основным и едва ли не самым важным требованием к современной технологии, причем она должна пониматься в самом широком смысле.

В понятие комплексности использования сырья должно включаться максимально высокое извлечение всех ценных составляющих руды: меди, никеля, цинка, кобальта, серы, железа, благородных металлов, редких и рассеянных элементов, а также использование силикатной части руды.

Перерабатываемые сульфидные руды и концентраты обладают достаточно высокой теплотворной способностью и являются не только источником ценных компонентов, но и технологическим топливом. Следовательно, в понятие комплексного использования сырья должно включаться и использование его внутренних энергетических возможностей.

Медные руды и концентраты имеют одинаковый минералогический состав, и отличаются лишь количественными соотношениями между различными минералами. Следовательно, физико-химические основы их металлургической переработки совершенно одинаковы.

Для переработки медьсодержащего сырья с целью получения металлической меди применяют как пиро-, так и гидрометаллургические процессы.

В общем объеме производства меди на долю пирометаллургических способов приходится около 85 % мирового выпуска этого металла.

Пирометаллургическая технология предусматривает переработку исходного сырья (руды или концентрата) на черновую медь с последующим ее обязательным рафинированием. Если принять во внимание, что основная масса медной руды или концентрата состоит из сульфидов меди и железа, то конечная цель пирометаллургии меди - получение черновой меди - достигается за счет практически полного удаления пустой породы, железа и серы.

Наиболее распространенная технология предусматривает обязательное использование следующих металлургических процессов: плавку на штейн, конвертирование медного штейна, огневое и электролитическое рафинирование меди.

В ряде случаев перед плавкой проводят предварительный окислительный обжиг сульфидного сырья. Обжиг применяется для частичного удаления серы и перевода сульфидов железа и других элементов в легко шлакуемые при последующей плавке оксиды. В результате обжига большая часть сульфидов переходит в оксиды, часть из которых в виде оксидов улетучивается.

Медные штейны, содержащие в зависимости от исходного рудного сырья и технологии переработки от 10…12 до 70…75% меди, преимущественно перерабатывают методом конвертирования.

Основная цель конвертирования - получение черновой меди за счет окисления железа и серы и некоторых других сопутствующих компонентов. Благородные металлы (серебро, золото), основная часть селена и теллура остаются в черновом металле.

Черновую медь выпускают в виде слитков массой до 1200 кг и анодов, которые идут на электролитическое рафинирование.

Рафинирование меди производят огневым и электролитическим способами.

Цель огневого рафинирования на предварительной (перед электрохимической) стадии производства сводится к частичной очистке меди от примесей, обладающих повышенным сродством к кислороду, и подготовке ее к последующему электролитическому рафинированию. Методом огневого рафинирования из расплавленной меди стремятся максимально удалить серу, кислород, железо, никель, цинк, свинец, мышьяк, сурьму и растворенные газы.

Для непосредственного технического применения черновая медь не пригодна, и поэтому ее обязательно подвергают рафинированию с целью очистки от вредных примесей и попутного извлечения благородных металлов, селена и теллура.

Небольшие включения (несколько частиц на миллион частиц меди) таких элементов как селен, теллур и висмут могут значительно ухудшить электропроводность и обрабатываемость меди - свойства, которые особенно важны для промышленности, производящей кабельнопроводниковую продукцию, являющейся крупнейшим потребителем рафинированной меди. Электролитическое рафинирование считается основным процессом, который позволяет получить медь, отвечающую наиболее жестким требованиям электротехники.

Сущность электролитического рафинирования меди заключается в том, что литые анод (отлитый, как правило, из меди огневого рафинирования) и катоды - тонкие матрицы из электролитной меди - попеременно завешивают в электролитную ванну, заполненную электролитом, и через эту систему пропускают постоянный ток.

В результате электролитического рафинирования предполагается получить медь высокой чистоты (99,90…99,99% Cu).

Следует отметить, что чем выше в исходной меди содержание благородных металлов, тем ниже будет себестоимость электролитной меди.

Для осуществления электролитического рафинирования меди аноды, отлитые после огневого рафинирования, помещают в электролизные ванны, заполненные сернокислым электролитом. Между анодами в ваннах располагаются тонкие медные листы - катодные основы.

Электролит - водный раствор сульфата меди (160…200 г/л) и серной кислоты (135…200 г/л) с примесями и коллоидными добавками, расход которых составляет 50…60 г/т Cu. Чаще всех в качестве коллоидных добавок используют столярный клей и тиомочевину. Они вводятся для улучшения качества (структуры) катодных осадков. Рабочая температура электролита - 50…55 ОС.

При включении ванн в сеть постоянного тока происходит электрохимическое растворение меди на аноде, перенос катионов через электролит и осаждение ее на катоде. Примеси меди при этом в основном распределяются между шламом (твердым осадком на дне ванн) и электролитом.

В результате электролитического рафинирования получают: катодную медь; шлам, содержащий благородные металлы; селен; теллур и загрязненный электролит, часть которого иногда используют для получения медного и никелевого купоросов. Кроме того, вследствие неполного электрохимического растворения анодов получают анодные остатки (анодный скрап).

Электролитическое рафинирование основано на различии электрохимических свойств меди и содержащихся в ней примесей.

Медь относится к группе электроположительных металлов, ее нормальный потенциал 0,34 В, что позволяет осуществлять процесс электролиза в водных сернокислых растворах.

Примеси по электрохимическим свойствам разделяют на четыре группы: 1 группа - металлы более электроотрицательные, чем медь (Ni, Fe, Zn);

2 группа - металлы, расположенные близко к меди в ряду напряжений (As, Sb, Bi);

3 группа - металлы более электроположительные, чем медь (Au, Ag, платиновая группа);

4 группа - электрохимически нейтральные химические соединения (Cu2S, Cu2Se, Cu2Te и др.).

Механизм электролитического рафинирования меди включает следующие элементарные стадии: -электрохимическое растворение меди на аноде с отрывом электронов и образование катиона: Cu - 2е -> Cu2 ;

-перенос катиона через слой электролита к поверхности катода;

-электрохимическое восстановление катиона меди на катоде: Cu2 - 2e -> Cu;

-внедрение образовавшегося атома меди в кристаллическую решетку (рост катодного осадка).

Примеси первой группы, обладающие наиболее электроотрицательным потенциалом, практически полностью переходят в электролит. Исключение составляет лишь никель, около 5 % которого из анода осаждается в шлам в виде твердого раствора никеля в меди. По закону Нернста твердые растворы становятся даже более электроположительными, чем медь, что и является причиной их перехода в шлам.

Особенное поведение по сравнению с перечисленными группами примесей демонстрируют свинец и олово, которые по электрохимическим свойствам относятся к примесям 1 группы, но по своему поведению в процессе электролиза могут быть отнесены к примесям 3 и 4 групп. Свинец и олово образуют нерастворимые в сернокислом растворе сульфат свинца PBS04 и метаоловянную кислоту H2Sn03.

Электроотрицательные примеси на катоде в процессе электролиза меди практически не осаждаются и постепенно накапливаются в электролите. При большой концентрации в электролите металлов первой группы электролиз может существенно расстроиться.

Накопление в электролите сульфатов железа, никеля и цинка снижает концентрацию в электролите сульфата меди. Кроме того, участие электроотрицательных металлов в переносе тока через электролит усиливает концентрационную поляризацию у катода.

Электроотрицательные металлы могут попадать в катодную медь в основном в виде межкристаллических включений раствора или основных солей, особенно при их значительной концентрации в электролите. В практике электролитического рафинирования меди не рекомендуется допускать их концентрацию в растворе свыше следующих значений, г/л: 20 Ni; 25 Zn; 5 Fe.

Примеси II группы (As, Sb, Bi), имеющие близкие к меди электродные потенциалы, являются наиболее вредными с точки зрения возможности загрязнения катода. Будучи несколько более электроотрицательными по сравнению с медью, они полностью растворяются на аноде с образованием соответствующих сульфатов, которые накапливаются в электролите. Однако сульфаты этих примесей неустойчивы и в значительной степени подвергаются гидролизу, образуя основные соли (Sb и Bi) или мышьяковистую кислоту (As). Основные соли сурьмы образуют плавающие в электролите хлопья студенистых осадков ("плавучий" шлам), которые захватывают частично и мышьяк.

В катодные осадки примеси мышьяка, сурьмы и висмута могут попадать как электрохимическим, так и механическим путем в результате адсорбции тонкодисперсных частичек "плавучего" шлама. Таким образом, примеси 2 группы распределяются между электролитом, катодной медью и шламом. Предельно допустимые концентрации примесей 2 группы в электролите составляют, г/л: 9 As; 5 Sb и 1,5 Bi.

Более электроположительные по сравнению с медью примеси (3 группа), к которым относятся благородные металлы (главным образом, Au и Ag), в соответствии с положением в ряду напряжений должны переходить в шлам в виде тонкодисперсного остатка. Это подтверждается практикой электролитического рафинирования меди.

Переход золота в шлам составляет более 99,5 % от его содержания в анодах, а серебра - более 98 %. Несколько меньший переход серебра в шлам по сравнению с золотом связан с тем, что серебро способно в небольшом количестве растворяться в электролите и затем из раствора выделяться на катоде. Для уменьшения растворимости серебра и перевода его в шлам в состав электролита вводят небольшое количество ионов хлора.

Аналогично электроположительным примесям ведут себя при электролизе меди химические соединения (примеси 4 группы). Хотя, в принципе, химические соединения и могут окисляться на аноде и восстанавливаться на катоде, что используют в специальных процессах, в условиях электролитического рафинирования меди анодного потенциала недостаточно для их окисления. Поэтому при электролизе меди в электродных процессах они не участвуют и по мере растворения анода осыпаются на дно ванны. В виде селенидов и теллуридов переходят в шлам более чем 99 % селена и теллура.

Таким образом, в результате электролитического рафинирования анодной меди все содержащиеся в ней примеси распределяются между катодной медью, электролитом и шламом.

Плотность тока является важнейшим параметром процесса электролиза. Плотность тока при электролизе обычно выбирают от 220…230 до 300 А/м2 площади катода, и общий расход энергоносителей составляет от 1800 до 4000 МДЖ/т анодов (электроэнергии 200…300 КВТ*ч/т меди).

Электроположительный потенциал меди позволяет выделить медь на катоде из кислых растворов без опасения выделения водорода. Введение в электролит наряду с медным купоросом свободной серной кислоты существенно повышает электропроводность раствора. Объясняется это большей подвижностью ионов водорода по сравнению с подвижностью крупных катионов и сложных анионных комплексов.

В качестве катодной основы (матрицы) применяют в зависимости от системы электролиза тонкие медные, титановые и стальные листы. Аноды обычно отливают массой 250…360 кг. Продолжительность растворения анода от 20 до 28 суток.

В течение этого времени производят дватри съема катодов, масса каждого из которых составляет 100…150 кг. Катоды являются конечным продуктом электролитического рафинирования меди.

В процессе электролиза на поверхности катода могут образовываться дендриты, что уменьшает в данном месте расстояние между катодом и анодом. Уменьшение межэлектродного расстояния ведет к уменьшению электрического сопротивления, а, следовательно, к местному увеличению плотности тока. Последнее, в свою очередь, обусловливает ускоренное осаждение меди на дендрите и ускоренный его рост. Начавшийся рост дендрита в конечном итоге может привести к короткому замыканию между катодом и анодом.

Катоды должны быть плотными, нехрупкими. На поверхности катода не должно быть дендритных наростов пористой меди. Допускается наличие наростов, вросших в тело катода, на катодах, изготовленных из меди марок М0ку, М0к ИМ1к. Поверхность катодов и катодных ушек должна быть чистой, хорошо отмытой от электролита, и не должна иметь налета сульфатов меди и никеля.

Проблема внешнего вида и структурного состояния катода усложняет и удорожает технологию электрохимического рафинирования. В большинстве случаев катоды непосредственно непригодны для изготовления высококачественного проката. Поэтому заметную часть катодной меди заводы производители переплавляют в слитки, которые называют вайербарсами (заготовки для прокатки и волочения). По такой усложненной технологии получают безкислородную медь для изготовления тонкой проволоки.

Электролитическое рафинирование меди позволяет полностью извлекать золото, серебро, платиновые и редкие металлы (Se, Те, Bi и др.) и обеспечивает достаточно глубокую очистку от вредных примесей. Стоимость попутно извлекаемых спутников меди обычно перекрывает все затраты на рафинирование, поэтому этот процесс является очень экономичным.

Золото и серебро извлекают при переработке медных руд с большой полнотой и попутно с медью без организации специальных переделов (кроме необходимой переработки богатых электролизных шламов). Поэтому максимальное вовлечение в попутную переработку вместе с медными рудами золотосодержащего сырья (например, кварцитов) экономически очень эффективно и максимально используется.

Более 95 % выплавленной черновой меди в настоящее время подвергают двустадийному рафинированию. Вначале медь рафинируют огневым (окислительным) способом, а затем проводят электролиз. В отдельных случаях, когда медь не содержит благородных металлов, ее очистку ограничивают огневым рафинированием. Обычно достигаемая чистота меди после традиционного огневого рафинирования - 99,9 % Cu (мас.). Полученную в этом случае красную медь используют для проката на лист и для приготовления ряда сплавов.

-Возможны три варианта организации рафинирования черновой меди в промышленных условиях: -Обе стадии рафинирования проводят на том же предприятии, где выплавляют черновую медь. В этом случае на огневое рафинирование медь поступает в расплавленном состоянии.

-Обе стадии рафинирования осуществляют на специальных рафинировочных заводах, на которые черновая медь поступает в слитках массой до 1500 кг. Такая технология требует повторного расплавления чернового металла, но позволяет на месте перерабатывать анодные остатки электролизного передела и технологический брак.

Огневое рафинирование жидкой черновой меди проводят на медеплавильных заводах, а электролиз анодов осуществляют централизованно на специальных предприятиях. Такой вариант рафинирования черновой меди характерен, в частности, для п

Вывод
Большая роль меди в технике обусловлена рядом ее ценных свойств и прежде всего высокой электропроводностью, пластичностью, теплопроводностью. Благодаря этим свойствам медь - основной материал для проводов; свыше 50% добываемой меди применяют в электротехнической промышленности. Все примеси понижают электропроводность меди, а потому в электротехнике используют металл высших сортов, содержащий не менее 99,9% Cu. Высокие теплопроводность и сопротивление коррозии позволяют изготовлять из меди ответственные детали теплообменников, холодильников, вакуумных аппаратов и т. п. Около 30-40% меди используют в виде различных сплавов, среди которых наибольшее значение имеют латуни (от 0 до 50% Zn) и различные виды бронз: оловянистые, алюминиевые, свинцовистые, бериллиевые и т. д. Кроме нужд тяжелой промышленности, связи, транспорта, некоторое количество меди (главным образом в виде солей) потребляется для приготовления минеральных пигментов, борьбы с вредителями и болезнями растений, в качестве микроудобрений, катализаторов окислительных процессов, а также в кожевенной и меховой промышленности и при производстве искусственного шелка. Медь как художественный материал используется с медного века (украшения, скульптура, утварь, посуда). Кованые и литые изделия из меди и сплавов украшаются чеканкой, гравировкой и тиснением. Легкость обработки меди (обусловленная ее мягкостью) позволяет мастерам добиваться разнообразия фактур, тщательности проработки деталей, тонкой моделировки формы. Изделия из меди отличаются красотой золотистых или красноватых тонов, а также свойством обретать блеск при шлифовке. Медь нередко золотят, патинируют, тонируют, украшают эмалью. С 15 века медь применяется также для изготовления печатных форм.

Ввиду всего вышесказанного получаем, что добыча меди в чистом виде является жизненно важной задачей.

Список литературы
1. Смирягин А. П., Смирягина Н. А., Белова А. В., Промышленные цветные металлы и сплавы, Справочник, 3 изд., М., 1974;[Металловедение медных сплавов], в сб.: 2. Научные труды института Гипроцветметобработка, М., 1975-85.

3. http://www.chemport.ru

4. http://steeltimes.ru

5. http://www.dpva.info

6. http://ido.tsu.ru

7. http://alhimikov.net

8. http://chem100.ru

9. http://www.chemicalnow.ru

Размещено на .ru
Заказать написание новой работы



Дисциплины научных работ



Хотите, перезвоним вам?