Подходы к функциональной характеристике геномных повторов. Основные методы прямого экспериментального сравнения участков интеграции геномных повторов между ДНК близкородственных видов. Полногеномные исследования промоторной активности геномных повторов.
Аннотация к работе
РОССИЙСКАЯ АКАДЕМИЯ НАУК Полногеномные подходы к функциональному анализу повторяющихся элементовПрименение технологии микрочипов не может быть полноценной заменой полного секвенирования, так как не позволяет различать слабодивергировавших представителей мультигенных семейств, а также те последовательности, в состав которых входят повторяющиеся элементы. Однако этот подход имеет важный недостаток: все данные о наличии повторов в различных локусах генома берутся из баз данных и, учитывая, что для всех крупных проектов секвенируют ДНК лишь небольшого количества представителей исследуемого вида, подавляющее большинство информации о полиморфных в популяции повторах теряется. Основной целью настоящей работы являлась разработка экспериментальных подходов, позволяющих проводить полногеномное сравнение распределения геномных повторов в ДНК представителей разных видов или между различными особями одного вида. Такие ретроэлементы присутствуют только в ДНК человека, но не в геномах других наиболее родственных видов (шимпанзе Pan paniscus u Pan troglodytes) и других организмов. Для функциональной характеристики геномных повторов мы разработали новый экспериментальный подход, впервые позволяющий проводить полногеномные исследования промоторной активности геномных повторов как на качественном, так и на количественном уровне.Все отсеквенированные вставки из библиотеки, обработанной нуклеазой Surveyor (H5), содержали последовательности, высоко консервативные для этих двух геномов (средняя идентичность 98.3%). Некоторые вставки содержали участки, эволюционно консервативные для всех отсеквенированных на тот момент (ноябрь 2004) геномов млекопитающих - человека, шимпанзе, мыши и крысы. Для исследования этого предположения, мы провели еще одну межвидовую гибридизацию (H7), между геномами человека и обезьяны Нового света мармозеткой Callithrix pygmaea, при 65°C, с обработкой нуклеазой Surveyor. Геном мармозетки гораздо сильнее дивергировал от генома человека, чем ДНК шимпанзе [предковые линии гоминид и обезьян Нового света разошлись около 45 миллионов лет назад], дивергенция в среднем составляет 20% последовательности ДНК.71% вставок библиотеки содержал умеренно (14%) дивергировавшие повторяющиеся элементы, присутствующие как в геноме мармозетки, так и у человека. Для того, чтобы подтвердить высокую степень консервативности этих последовательностей между человеком и мармозеткой экспериментально, была проведена ПЦР-амплификация и секвенирование соответствующих локусов для трех таких последовательностей.Единственный чс LTR из контига AC022567, который не мог быть отнесен к семейству HS (см. выше), не имел высокоподобных (более 97% идентичности) последовательностей в геномных базах данных. Для того, чтобы найти частоты встречаемости характеристических нуклеотидных позиций HS консенсуса во всех членах HS семейства, а также в LTR, не являющихся членами группы HS, мы сделали множественное выравнивание найденных в этой работе 142 HS и 89 известных не-HS LTR (выравнивание помещено в разделе Supplementary Material на сайте http://humgen. siobc. ras.ru). По всей вероятности, материнские последовательности HS семейства возникли в геноме общего предка линий гориллы, шимпанзе и человека около 10.7 миллионов лет назад, дав группу HS-b. Эта группа, оставаясь активной, 5.8 миллионов лет назад, то есть примерно во время расхождения предковых линий человека и шимпанзе, в свою очередь, дала начало группе HS-a, которая на настоящий момент составляет большую часть (63%) всего семейства HS, по-видимому, в силу большей ретропозиционной активности. Интересно, что группа HS-a оказалась наиболее активной также и в геноме шимпанзе, как следует из результатов недавно проведенного группой Скотта Девина (Scott Devine) анализа шимпанзе-специфичных элементов.Это может свидетельствовать о существовании пока неустановленных механизмов подавления активности “лишних" промоторов, созданных мутациями или вирусными вставками, и расположенными вблизи генов или в интронах. Для более полной характеристики этих двух случаев был определен уровень транскрипции генов SLB и SLC, а также находящихся в них LTR для еще десяти тканей человека: скелетной мышцы, печени, сердца, легкого (нормы и опухоли), гиппокампа и эмбриональных тканей мозга (лобной доли, затылочной коры, базальных ядер и гипоталамуса). В большинстве случаев, как и для LTR в гене SLC, уровень транскрипции LTR оказался в 4-8 раз ниже уровня транскрипции гена (эмбриональные лобная доля и гипоталамус, печень, легкое (опухоль) и гиппокамп). Для доказательства того, что во всех случаях мы имеем дело именно с транскриптами, комплементарными РНК гена, был проведен синтез первых цепей КДНК с праймером, избирательно связывающимся с антисмысловыми к гену РНК.