Погрешность измерения - Контрольная работа

бесплатно 0
4.5 41
Погрешности по форме числового выражения. Вид источника, вызывающего погрешность. Сущность методических, инструментальных, субъективных, личностных факторов. Предельные, вероятные, средние, среднеарифметические, среднеквадратические случайные величины.


Аннотация к работе
В практической жизни человек всюду имеет дело с измерениями. На каждом шагу встречаются измерения таких величин, как длина, объем, вес, время и др. Отраслью науки, изучающей измерения, является метрология. Она не являлась еще системой единиц в современном понимании, а включала в себя единицы длин, площадей, объемов, вместимостей и веса, в основу которых были положены две единицы: метр и килограмм. Наличие ряда систем единиц физических величин, а также значительного числа внесистемных единиц, неудобства, связанные с пересчетом при переходе от одной системы единиц к другой, требовало унификации единиц измерений.Погрешность результата измерения - это число, указывающее возможные границы неопределенности полученного значения измеряемой величины. В 2004 году на международном уровне был принят новый документ, диктующий условия проведения измерений и установивший новые правила сличения государственных эталонов. Понятие «погрешность» стало устаревать, вместо него было введено понятие «неопределенность измерений», однако ГОСТ Р 50.2.038-2004 допускает использовать термин погрешность для документов, использующихся в России. Поэтому, с одной стороны, невозможно в процессе измерения сразу получить истинное значение измеряемой величины, и, с другой стороны, результаты любых двух повторных измерений будут отличаться друг от друга. На погрешности также влияет несовершенство средств измерений, несовершенство методики измерений или недостаточная квалификация и тщательность работы оператора.Числовое выражение - это такое выражение, которое составлено из чисел, знаков математических действий и скобок. Это математическая формула, подразумевающая определенное число, Например, выражение 2 2 подразумевает число 4. Величина этой погрешности зависит от способа ее вычисления, который, в свою очередь, определяется распределением случайной величины Xmeas. Например, вагон массой 50 т измерен с абсолютной погрешностью ± 50 кг, относительная погрешность составляет ± 0,1 %. Например, абсолютная погрешность 0,01 мм может быть достаточно большой при измерениях величин в десятые доли миллиметра и малой при измерениях величин, размеры которых превышают несколько метров. б) Относительные погрешности - отношение абсолютной погрешности к тому значению, которое принимается за истинное: Относительная погрешность является безразмерной величиной, либо измеряется в процентах.Анализ таких погрешностей возможен только на основании априорных знаний о погрешностях, получаемых, в частности, при поверке средств измерений. Систематические погрешности приводят к искажению результатов измерений и потому должны выявляться и учитываться при оценке результатов измерений. К методическим погрешностям относят также влияние инструмента на свойства объекта (например, значительное измерительное усилие, изменяющее форму тонкостенной детали) или погрешности, связанные с чрезмерно грубым округлением результата измерения. б) Инструментальные. Для исключения инструментальной погрешности в производственных условиях проводят проверку средств измерений, устраняют те причины, которые вызваны воздействиями окружающей среды, сами измерения проводят в строгом соответствии с рекомендуемой методикой, принимая в необходимых случаях меры по ее совершенствованию. Также к этой категории можно отнести погрешности, обусловленные неправильной установкой и взаимным расположением средств измерения, являющихся частью единого комплекса, несогласованностью их характеристик, влиянием внешних температурных, гравитационных, радиационных и других полей, нестабильностью источников питания, несогласованностью входных и выходных параметров электрических цепей приборов и так далее.Очень широко среди практиков распространено мнение, что все затруднения с вероятностной оценкой погрешности объясняются лишь их слабой подготовкой в области математической статистики и теории вероятностей. Все необходимые для этого задачи, дескать, давно решены в теории вероятностей и теории случайных процессов. Очень многое применительно к нуждам оценки погрешностей еще ждет своей разработки. Так, например, нельзя же ожидать, что для всего разнообразия законов распределения погрешностей математики дадут таблицы квантилей. Здесь также большое количество нужных для практики задач в области разработки удобных методов описания параметров многомерного мениска погрешностей при многофакторном эксперименте и в использовании так называемых «робастных», т. е. не зависящих от вида закона распределения, устойчивых методов оценки параметров модели и исключения промахов, которые позволяют устранить неустойчивость при получении решений МНК для многомерных задач.

Вывод
Для окончательного закрепления указанной темы все погрешности были сведены в единую схему.

Рис. 4

Очень широко среди практиков распространено мнение, что все затруднения с вероятностной оценкой погрешности объясняются лишь их слабой подготовкой в области математической статистики и теории вероятностей. Все необходимые для этого задачи, дескать, давно решены в теории вероятностей и теории случайных процессов. Стоит лишь как следует овладеть премудростью этих наук и все сложности разрешатся сами собой. Но это верно лишь отчасти. Очень многое применительно к нуждам оценки погрешностей еще ждет своей разработки.

Так, например, нельзя же ожидать, что для всего разнообразия законов распределения погрешностей математики дадут таблицы квантилей. Такие таблицы заняли бы целый том. Нужно какое-то другое решение, например, в виде приближенных формул, а такие формулы нужно разработать. Подобное положение наблюдается и с методикой суммирования погрешностей. Строгое математическое решение в пике многомерного распределения для практики бесполезно. То же самое относится и к имитационному моделированию но методу Монте-Карло, так как оно не может дать общего решения, а численные решения всякий раз должны проводиться заново. Нужны упрощенные, практические методы. Это особенно относится к расчету погрешности косвенных измерений, где изза математической сложности необходимо ограничиться самыми примитивными методами.

Не лучше положение и со сравнительной эффективностью различных оценок центра, рассеянием оценок контрэксцесса, энтропийного коэффициента и энтропийного значения, исключением промахов при распределениях, отличных от нормального. Даже такой, казалось бы, классический спрос математической статистики, как оптимальное число интервалов группирования экспериментальных данных для построения полигона или гистограммы, оказывается, имеет почти столько же «оптимальных» решений, сколько излагающих его авторов. Всюду рекомендуемое использование критериев согласия для идентификации формы распределения практически не позволяет произвести желаемой идентификации при тех данных, которыми исследователь фактически располагает.

Подобный перечень как теоретических, так и практических задач можно было бы дать по обработке однофакторных и многофакторных экспериментов. Здесь также большое количество нужных для практики задач в области разработки удобных методов описания параметров многомерного мениска погрешностей при многофакторном эксперименте и в использовании так называемых «робастных», т. е. не зависящих от вида закона распределения, устойчивых методов оценки параметров модели и исключения промахов, которые позволяют устранить неустойчивость при получении решений МНК для многомерных задач.

Тем не менее, дальнейшая разработка устойчивых, не зависимых от вида распределения методов, представляет собой одно яз наиболее перспективных направлений развития методов обработки данных. На основе существующих методов уже сейчас могут быть созданы удобные программы для обработки данных исследования на ЭВМ.

Особого внимания заслуживает анализ путей повышения эффективности измерительного эксперимента. Это прежде всего разработка шкалы затрат на подготовку, постановку и проведение эксперимента и шкалы достигаемого эффекта с учетом как параметров мениска погрешностей, так и протяженности варьирования факторов. Естественно, что оценка результата сложного многофакторного эксперимента одним числом крайне примитивна. Здесь нужен системный, комплексный подход, своеобразная квалиметрия процесса измерения, в какой-то степени аналогичная квалиметрии СИ.

Одним словом, нерешенных вопросов в области оценки погрешностей результатов измерений вполне достаточно. Эти трудные и неблагодарные задачи еще ожидают энтузиастов для их разрешения.

Список литературы
1. Тюрин Н. И. Введение в метрологию. - М., Издательство Стандартов, 1973.

2. Кудряшов Л.С., Гуринович Г.В., Рензяева Т.В. Метрология, стандартизация, сертификация и управление качеством пищевой продукции. Учебное пособие. - Кемерово, 1997.

3. Бурдук Г.Д. Основы метрологии. - М., 1975.

4. Козлов М.Г. Метрология и стандартизация.

Размещено на .ru
Заказать написание новой работы



Дисциплины научных работ



Хотите, перезвоним вам?