В 1993 г. все ведущие информационные агентства передали сообщение о том, что двум американским математикам удалось доказать теорему Ферма в общем виде. Через полгода в нашей прессе выступил крупнейший алгебраист акад. Фадеев, который это подтвердил.
Аннотация к работе
Не обнаружив никаких сознательных претензий на место в истории, Ферма неожиданно умирает в возрасте 64 лет во время поездки по делам службы. В противоположность ему Пьер Ферма мало пишет, но по любому поводу может придумать массу остроумных математических трюков (см. там же “Теорема Ферма”, ”Принцип Ферма”, ”Метод бесконечного спуска Ферма”). С другой стороны к настоящему времени известно столько же простых чисел Ферма, сколько из знали во времена Ферма, а именно: 3, 5, 17, 257, 65537. Ферма ошибся, но Ферма был бы не Ферма, если бы позволил хоть одной своей теореме бесславно кануть в лету. 19-летний студент Геттингенского университета Карл Фридрих Гаусс произвел сенсацию, доказав теорему: правильный многоугольник может быть построен с помощью циркуля и линейки тогда и только тогда, когда число его сторон равно 2ap1p2...pb , где все простые числа pi являются числами Ферма, т. е. имеют вид .
Список литературы
1. П.Ферма. Исследования по теории чисел и диофантову анализу. М., “Наука”, 1992.